【題目】已知點,圓,過點的動直線與圓交于兩點,線段的中點為,為坐標(biāo)原點.
(Ⅰ)求的軌跡方程;
(Ⅱ)當(dāng)(不重合)時,求的方程及的面積.
【答案】(I);(II)(或) ,
【解析】
(Ⅰ)由圓C的方程求出圓心坐標(biāo)和半徑,設(shè)出M坐標(biāo),由與數(shù)量積等于0列式得M的軌跡方程;
(Ⅱ)設(shè)M的軌跡的圓心為N,由|OP|=|OM|得到ON⊥PM.求出ON所在直線的斜率,由直線方程的點斜式得到PM所在直線方程,由點到直線的距離公式求出O到l的距離,再由弦心距、圓的半徑及弦長間的關(guān)系求出PM的長度,代入三角形面積公式得答案.
(I)圓C的方程可化為,∴圓心為,半徑為4,設(shè),
∴由題設(shè)知 ,即.由于點在圓的內(nèi)部,所以的軌跡方程是.
(II)由(I)可知的軌跡是以點為圓心,為半徑的圓.
由于,故在線段的垂直平分線上,又在圓上,從而.
∵的斜率為3 ∴的方程為.(或).又,到的距離為,,∴的面積為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量與尺寸x(mm)之間近似滿足關(guān)系式(b、c為大于0的常數(shù)).按照某項指標(biāo)測定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時為優(yōu)等品.現(xiàn)隨機抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:
尺寸x(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
質(zhì)量y (g) | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
質(zhì)量與尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(Ⅰ)現(xiàn)從抽取的6件合格產(chǎn)品中再任選3件,記為取到優(yōu)等品的件數(shù),試求隨機變量的分布列和期望;
(Ⅱ)根據(jù)測得數(shù)據(jù)作了初步處理,得相關(guān)統(tǒng)計量的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(。└鶕(jù)所給統(tǒng)計量,求y關(guān)于x的回歸方程;
(ⅱ)已知優(yōu)等品的收益(單位:千元)與的關(guān)系為,則當(dāng)優(yōu)等品的尺寸x為何值時,收益的預(yù)報值最大?(精確到0.1)
附:對于樣本 ,其回歸直線的斜率和截距的最小二乘估計公式分別為:,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面為直角梯形,,,,為正三角形.
(1)若點是棱的中點,求證:平面;
(2)若平面⊥平面,在(1)的條件下,試求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直四棱柱的底面是直角梯形,,,、分別是棱、上的動點,且,,,.
(1)證明:無論點怎樣運動,四邊形都為矩形;
(2)當(dāng)時,求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點是圓心為半徑為的半圓弧上從點數(shù)起的第一個三等分點,點是圓心為半徑為的半圓弧的中點,、分別是兩個半圓的直徑,,直線與兩個半圓所在的平面均垂直,直線、共面.
(1)求三棱錐的體積;
(2)求直線與所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓相交于兩點且.求證: 的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
某菜園要將一批蔬菜用汽車從所在城市甲運至亞運村乙,已知從城市甲到亞運村乙只有兩條公路,且運費由菜園承擔(dān).
若菜園恰能在約定日期(月日)將蔬菜送到,則亞運村銷售商一次性支付給菜園20萬元; 若在約定日期前送到,每提前一天銷售商將多支付給菜園1萬元; 若在約定日期后送到,每遲到一天銷售商將少支付給菜園1萬元.
為保證蔬菜新鮮度,汽車只能在約定日期的前兩天出發(fā),且只能選擇其中的一條公路運送蔬菜,已知下表內(nèi)的信息:
統(tǒng)計信息 | 不堵車的情況下到達亞運村乙所需 時間 (天) | 堵車的情況下到達亞運村乙所需時間 (天) | 堵車的 | 運費 |
公路1 | 2 | 3 | ||
公路2 | 1 | 4 |
(注:毛利潤銷售商支付給菜園的費用運費)
(Ⅰ) 記汽車走公路1時菜園獲得的毛利潤為(單位:萬元),求的分布列和數(shù)學(xué)期望;
(Ⅱ) 假設(shè)你是菜園的決策者,你選擇哪條公路運送蔬菜有可能讓菜園獲得的毛利潤更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)理科成績優(yōu)異,今年參加了數(shù)學(xué),物理,化學(xué),生物4門學(xué)科競賽.已知該同學(xué)數(shù)學(xué)獲一等獎的概率為,物理,化學(xué),生物獲一等獎的概率都是,且四門學(xué)科是否獲一等獎相互獨立.
(1)求該同學(xué)至多有一門學(xué)科獲得一等獎的概率;
(2)用隨機變量表示該同學(xué)獲得一等獎的總數(shù),求的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列滿足:,.的前n項和為.
(Ⅰ)求 及;
(Ⅱ)若 ,(),求數(shù)列的前項和.
【答案】(Ⅰ), (Ⅱ)=
【解析】
試題分析:(Ⅰ)設(shè)出首項a1和公差d ,利用等差數(shù)列通項公式,就可求出,再利用等差數(shù)列前項求和公式就可求出;(Ⅱ)由(Ⅰ)知,再利用 ,(),就可求出,再利用錯位相減法就可求出.
試題解析:(Ⅰ)設(shè)等差數(shù)列{an}的首項為a1,公差為d
∵ , ∴ 解得
∴ ,
(Ⅱ)∵ , ∴
∵ ∴
∴
= (1- + - +…+-)
=(1-) =
所以數(shù)列的前項和= .
考點:1.等差數(shù)列的通項公式; 2. 等差數(shù)列的前n項和公式; 3.裂項法求數(shù)列的前n項和公式
【題型】解答題
【結(jié)束】
18
【題目】在如圖所示的幾何體中,四邊形是等腰梯形, , , 平面, , .
()求證: 平面.
()求二面角的余弦值.
()在線段(含端點)上,是否存在一點,使得平面,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com