A. | -$\frac{4}{9}$$\sqrt{2}$ | B. | $\frac{4}{9}$$\sqrt{2}$ | C. | ±$\frac{4}{9}$$\sqrt{2}$ | D. | -$\frac{7}{9}$ |
分析 法一、把sin(2α-$\frac{π}{6}$)化為sin[2(α-$\frac{π}{3}$)+$\frac{π}{2}$],利用誘導(dǎo)公式化為余弦,再代入二倍角的余弦公式求解;
法二、由已知求出sin(α-$\frac{π}{3}$),然后分類(lèi)求得sin($α-\frac{π}{12}$)和cos($α-\frac{π}{12}$)的值,再代入二倍角公式求得sin(2α-$\frac{π}{6}$)的值.
解答 解:法一、∵cos(α-$\frac{π}{3}$)=$\frac{1}{3}$,
∴sin(2α-$\frac{π}{6}$)=sin[2(α-$\frac{π}{3}$)+$\frac{π}{2}$]=cos2(α-$\frac{π}{3}$)
=$2co{s}^{2}(α-\frac{π}{3})-1=2×(\frac{1}{3})^{2}-1=-\frac{7}{9}$.
故選:D.
法二、由cos(α-$\frac{π}{3}$)=$\frac{1}{3}$,得sin(α-$\frac{π}{3}$)=$±\frac{2\sqrt{2}}{3}$,
∴當(dāng)sin($α-\frac{π}{3}$)=$\frac{2\sqrt{2}}{3}$時(shí),
cos($α-\frac{π}{12}$)=cos[($α-\frac{π}{3}$)+$\frac{π}{4}$]=cos($α-\frac{π}{3}$)cos$\frac{π}{4}$$-sin(α-\frac{π}{3})$sin$\frac{π}{4}$
=$\frac{1}{3}×\frac{\sqrt{2}}{2}-\frac{2\sqrt{2}}{3}×\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{6}-\frac{2}{3}$,
sin($α-\frac{π}{12}$)=sin[($α-\frac{π}{3}$)+$\frac{π}{4}$]=sin($α-\frac{π}{3}$)cos$\frac{π}{4}$+cos($α-\frac{π}{3}$)sin$\frac{π}{4}$
=$\frac{2\sqrt{2}}{3}×\frac{\sqrt{2}}{2}+\frac{1}{3}×\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{6}+\frac{2}{3}$,
∴sin(2α-$\frac{π}{6}$)=sin2(α-$\frac{π}{12}$)=2sin(α-$\frac{π}{12}$)cos(α-$\frac{π}{12}$)=2$(\frac{\sqrt{2}}{6}+\frac{2}{3})(\frac{\sqrt{2}}{6}-\frac{2}{3})$=$-\frac{7}{9}$;
當(dāng)sin($α-\frac{π}{3}$)=-$\frac{2\sqrt{2}}{3}$時(shí),
cos($α-\frac{π}{12}$)=cos[($α-\frac{π}{3}$)+$\frac{π}{4}$]=cos($α-\frac{π}{3}$)cos$\frac{π}{4}$$-sin(α-\frac{π}{3})$sin$\frac{π}{4}$
=$\frac{1}{3}×\frac{\sqrt{2}}{2}+\frac{2\sqrt{2}}{3}×\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{6}+\frac{2}{3}$,
sin($α-\frac{π}{12}$)=sin[($α-\frac{π}{3}$)+$\frac{π}{4}$]=sin($α-\frac{π}{3}$)cos$\frac{π}{4}$+cos($α-\frac{π}{3}$)sin$\frac{π}{4}$
=$-\frac{2\sqrt{2}}{3}×\frac{\sqrt{2}}{2}+\frac{1}{3}×\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{6}-\frac{2}{3}$,
∴sin(2α-$\frac{π}{6}$)=sin2(α-$\frac{π}{12}$)=2sin(α-$\frac{π}{12}$)cos(α-$\frac{π}{12}$)=2$(\frac{\sqrt{2}}{6}+\frac{2}{3})(\frac{\sqrt{2}}{6}-\frac{2}{3})$=$-\frac{7}{9}$.
綜上,sin(2α-$\frac{π}{6}$)=$-\frac{7}{9}$.
故選:D.
點(diǎn)評(píng) 本題考查二倍角的余弦,考查了學(xué)生的計(jì)算能力,關(guān)鍵是“拆角配角”思想的應(yīng)用,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 3 | C. | -3 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1-{a}^{n}}{1-a}$ | B. | $\frac{1-{a}^{n+1}}{1-a}$ | C. | 1+n或$\frac{1-{a}^{n}}{1-a}$ | D. | 1+n或$\frac{1-{a}^{n+1}}{1-a}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0<r<$\sqrt{2}$ | B. | 0<r<$\frac{\sqrt{11}}{2}$ | C. | 0<r<$\sqrt{3}$ | D. | 0<r<$\frac{\sqrt{13}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
x | 2 | 3 | 4 | 5 |
y | 1.5 | 2 | 3 | 3.5 |
A. | 5.65 | B. | 6.45 | C. | 4.35 | D. | 5.05 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com