分析 (1)要證明AB⊥平面CDE,只需證明AB垂直平面CDE內(nèi)的兩條相交直線CE、DE即可;
(2)要證明EF∥平面ACD,只需證明EF∥AC,利用三角形中位線的性質(zhì),可得結(jié)論.
解答 證明:(1)∵BC=AC,E為AB的中點(diǎn),
∴AB⊥CE.
又∵AD=BD,E為AB的中點(diǎn)
∴AB⊥DE.
∵DE∩CE=E
∴AB⊥平面DCE;
(2)∵E,F(xiàn)分別是AB,BC的中點(diǎn),
∴EF∥AC,
∵EF?平面ACD,AC?平面ACD,
∴EF∥平面ACD.
點(diǎn)評 本題考查直線與平面垂直的判定,直線與平面平行,考查邏輯思維能力,空間想象能力,是基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A(0)=(-∞,3] | B. | A(1)={2} | C. | A(2)=(3,+∞) | D. | A(3)=(3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com