分析 (1)通過討論x的范圍,求出各個(gè)區(qū)間的解集,取并集即可;(2)令F(x)=f(x)+|x-1|,求出F(x)的最小值,從而求出a的范圍即可.
解答 解:(1)當(dāng)f(x)=|x-1|+|x-2|=$\left\{\begin{array}{l}{-2x+3,x<1}\\{1,1≤x≤2}\\{2x-3,x>2}\end{array}\right.$,而f(x)≥2,
解得$x≤\frac{1}{2}$或$x≥\frac{5}{2}$.…(5分)
(2)令F(x)=f(x)+|x-1|,則F(x)=$\left\{\begin{array}{l}{-3x+2+a,x<1}\\{x-2+a,1≤x<a}\\{3x-2-a,x≥a}\end{array}\right.$,
所以當(dāng)x=1時(shí),F(xiàn)(x)有最小值F(1)=a-1,
只需a-1≥1,解得a≥2,
所以實(shí)數(shù)a的取值范圍是[2,+∞).…(10分)
點(diǎn)評(píng) 本題考查了解絕對(duì)值不等式問題,考查分類討論思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1009 | B. | -1008 | C. | -1007 | D. | -1006 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{7}$ | C. | $2\sqrt{7}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | 6 | C. | -6 | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com