【題目】設(shè)函數(shù), 為曲線在點處的切線.

)求的方程.

)當時,證明:除切點之外,曲線在直線的下方.

)設(shè), ,且滿足,求的最大值.

【答案】見解析

【解析】試題分析:()先求導(dǎo),再求的值,根據(jù)導(dǎo)數(shù)的幾何意義可知切線的斜率即為.由點斜式可得直線方程.)即證明, 恒成立.變形可得即證恒成立即可.求導(dǎo),討論導(dǎo)數(shù)的正負,根據(jù)導(dǎo)數(shù)的正負可得函數(shù)的單調(diào)性.根據(jù)單調(diào)性可求其最值,其最大值小于0即可.)當時由()可知.中至少有一個大于等于,可用配方法求各自值域再相加.

試題解析:解:(.

所以.

所以 L的方程為,即3

)要證除切點之外,曲線C在直線L的下方,只需證明恒成立.

因為,

所以只需證明, 恒成立即可. 5

設(shè)

.

,解得, . 6

上變化時, 的變化情況如下表

所以, 恒成立. 8

)()當時,

由()可知: ,

, .

三式相加,得.

因為,

所以,且當時取等號. 11

)當中至少有一個大于等于時,

不妨設(shè),則,

因為,

所以

綜上所述,當取到最大值. 14

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),又恰為 的零點.

(1)當時,求的單調(diào)區(qū)間;

(2)當時,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,是正三角形,線段都垂直于平面,設(shè),,且的中點.

(1)求證:平面;

(2)求證:;

(3)求平面與平面所成的較小二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有六支足球隊參加單循環(huán)比賽(即任意兩支球隊只踢一場比賽),第一周的比賽中,各踢了場, 各踢了場, 踢了場,且隊與隊未踢過, 隊與隊也未踢過,則在第一周的比賽中, 隊踢的比賽的場數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的部分圖象如圖所示

)寫出及圖中的值.

)設(shè),求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的漸近線方程是,右焦點則雙曲線的方程為_________,又若點, 是雙曲線的左支上一點,周長的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[2018·贛中聯(lián)考]李冶(1192-1279),真實欒城(今屬河北石家莊市)人,金元時期的數(shù)學(xué)家、詩人,晚年在封龍山隱居講學(xué),數(shù)學(xué)著作多部,其中《益古演段》主要研究平面圖形問題:求圓的直徑、正方形的邊長等.其中一問:現(xiàn)有正方形方田一塊,內(nèi)部有一個圓形水池,其中水池的邊緣與方田四邊之間的面積為13.75畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長分別是(注:240平方步為1畝,圓周率按3近似計算)(

A. 10步,50 B. 20步,60 C. 30步,70 D. 40步,80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 為常數(shù)).

(1)若函數(shù)與函數(shù)處有相同的切線,求實數(shù)的值;

(2)若,且,證明:

(3)若對任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各組函數(shù)中,表示同一個函數(shù)的是(   ).

A.y=x+1y=B.y=x0y=C.f(x)=(x-1)2g(x)=(x+1)2D.f(x)=g(x)=

查看答案和解析>>

同步練習(xí)冊答案