雙曲線數(shù)學(xué)公式=1的右焦點(diǎn)坐標(biāo)為


  1. A.
    (2,0)
  2. B.
    (0,2)
  3. C.
    數(shù)學(xué)公式,0)
  4. D.
    (0,,數(shù)學(xué)公式
A
分析:利用雙曲線的標(biāo)準(zhǔn)方程確定幾何量,即可得到雙曲線的右焦點(diǎn)的坐標(biāo).
解答:∵雙曲線的方程為=1
∴a2=3,b2=1
∴c2=a2+b2=4
∴c=2
∴雙曲線=1的右焦點(diǎn)坐標(biāo)為(2,0)
故選A.
點(diǎn)評:本題考查雙曲線的標(biāo)準(zhǔn)方程與幾何性質(zhì),考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
3
-y2
=1的右焦點(diǎn)坐標(biāo)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•宿州一模)已知斜率為1的直線l與雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
相交于B、D兩點(diǎn),且BD的中點(diǎn)為M(1,3).
(1)求雙曲線C的離心率;
(2)若雙曲線C的右焦點(diǎn)坐標(biāo)為(3,0),則以雙曲線的焦點(diǎn)為焦點(diǎn),過直線g:x-y+9=0上一點(diǎn)M作橢圓,要使所作橢圓的長軸最短,點(diǎn)M應(yīng)在何處?并求出此時(shí)的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省安慶市高三第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

雙曲線=1的右焦點(diǎn)坐標(biāo)為

  A. (2, 0)    B.(0,2)        C. (, 0)           D. (0,, )

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省宿州市高三第一次教學(xué)質(zhì)量檢測理科數(shù)學(xué)試卷 題型:解答題

(本小題滿分12分)已知斜率為1的直線與雙曲線相交于B、D兩點(diǎn),且BD的中點(diǎn)為M(1,3)。

(1)求雙曲線C的離心率;

(2)若雙曲線C的右焦點(diǎn)坐標(biāo)為(3,0),則以雙曲線的焦點(diǎn)為焦點(diǎn),過直線上一點(diǎn)M作橢圓,要使所作橢圓的長軸最短,點(diǎn)M應(yīng)在何處?并求出此時(shí)的橢圓方程。

 

查看答案和解析>>

同步練習(xí)冊答案