【題目】如圖,四棱錐中,側(cè)面底面, , , , , ,點(diǎn)在棱上,且,點(diǎn)在棱上,且平面.
(1)求證: 平面;
(2)求二面角的余弦值.
【答案】(1)詳見解析(2)
【解析】試題分析:連接交于點(diǎn),根據(jù)三角形相識,可得, ,由勾股定理可得是直角三角形,進(jìn)而得,再由面面垂直判定定理可得結(jié)論;(2)以, , 所在直線分別為軸, 軸, 軸建立空間直角坐標(biāo)系,求出平面的法向量與平面的法向量,利用空間向量夾角余弦公式可得結(jié)果.
試題解析:(1)如圖連接交于點(diǎn),因?yàn)?/span>平面,所以,由,所以,又,所以,
所以, ,
又因?yàn)?/span>,所以是直角三角形,
又,所以,
又因?yàn)閭?cè)面底面,所以平面.
(2)因?yàn)?/span>, ,所以,有,如圖,以, , 所在直線分別為軸, 軸, 軸建立空間直角坐標(biāo)系,
則, , ,
,所以,
所以 ,
設(shè)平面的法向量為,
則,
,令,則,所以,
又因?yàn)槠矫?/span>的法向量,
所以,
即所求二面角的余弦值是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=9,an+1=an+2n+5;數(shù)列{bn}滿足b1= ,bn+1= bn(n≥1).
(1)求an , bn;
(2)記數(shù)列{ }的前n項(xiàng)和為Sn , 證明: ≤Sn< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中國詩詞大會》是中央電視臺最近推出的一檔有重大影響力的大型電視文化節(jié)目,今年兩會期間,教育部部長陳寶生答記者問時(shí)就給予其高度評價(jià).基于這樣的背景,山東某中學(xué)積極響應(yīng),也舉行了一次詩詞競賽.組委會在競賽后,從中抽取了部分選手的成績(百分制),作為樣本進(jìn)行統(tǒng)計(jì),作出了圖1的頻率分布直方圖和圖2的莖葉圖(但中間三行污損,看不清數(shù)據(jù)).
(I)求樣本容量和頻率分布直方圖中的,的值;
(II)分?jǐn)?shù)在[80,90)的學(xué)生中,男生有2人,現(xiàn)從該組抽取三人“座談”,寫出基本事件空間并求至少有兩名女生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線:,過焦點(diǎn)斜率大于零的直線交拋物線于、兩點(diǎn),且與其準(zhǔn)線交于點(diǎn).
(Ⅰ)若線段的長為,求直線的方程;
(Ⅱ)在上是否存在點(diǎn),使得對任意直線,直線,,的斜率始終成等差數(shù)列,若存在求點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),( )
(1)當(dāng)時(shí),求函數(shù)在處的切線方程;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍;
(3)求函數(shù)在區(qū)間的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4;坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)中,曲線.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程.
(Ⅱ)求曲線上的點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 為實(shí)常數(shù).
(Ⅰ)設(shè),當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),直線、與函數(shù)、的圖象一共有四個(gè)不同的交點(diǎn),且以此四點(diǎn)為頂點(diǎn)的四邊形恰為平行四邊形.
求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com