如圖,已知多面體的底面是邊長為的正方形,底面,,且
(Ⅰ)求多面體的體積;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)記線段BC的中點為K,在平面ABCD內過點K作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.
(Ⅰ)(Ⅰ)
(Ⅱ)設直線與平面所成角為  
(Ⅲ)利用三角形中位線定理,取線段DC的中點,連接即為所求.

試題分析:(Ⅰ)(Ⅰ)連接ED,利用“分割法”計算得
(Ⅱ)以點A為原點,AB所在的直線為軸,AD所在的直線為軸,建立空間直角坐標系.確定得到A(0,0,0),E(0,0,2),B(2,0,0),C(2,2,0),F(0,2,1),及.
利用  確定平面的一個法向量為.
設直線與平面所成角為 
(Ⅲ)取線段DC的中點;連接,則直線即為所求.
試題解析:(Ⅰ)如圖,連接ED,
底面,∴底面,
,
,
,                     1分
,         2分
  ,              3分
∴多面體的體積
.              5分
(Ⅱ)以點A為原點,AB所在的直線為軸,AD所在的直線為軸,建立空間直角坐標系,如圖.由已知可得A(0,0,0),E(0,0,2),B(2,0,0),C(2,2,0),F(0,2,1),

所以       7分
設平面ECF的法向量為,
   得:
取y=1,得平面的一個法向量為         9分
設直線與平面所成角為,
所以    11分  
(Ⅲ)取線段CD的中點;連接,直線即為所求.                12分
圖上有正確的作圖痕跡            13分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,,,,的中點.

(1)求證:;
(2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在邊長為的正方形中,分別為的中點,分別為的中點,現(xiàn)沿折疊,使三點重合,重合后的點記為,構成一個三棱錐.

(1)請判斷與平面的位置關系,并給出證明;
(2)證明平面;
(3)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,正四棱柱,=2,,分別在,上移動,且始終保持∥平面,設,,則函數(shù)的圖象大致是(  )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知兩條直線,兩個平面.下面四個命題中不正確的是(   )
A.
B.,,;
C.,
D.,

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對于直線和平面,若,則“”是“”的(   )
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

三棱錐及其三視圖中的主視圖和左視圖如圖9所示,則棱的長為_________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設l、m是兩條不同的直線,a,β是兩個不同的平面,有下列命題:
①l//m,ma,則l//a ;② l//a,m//a 則 l//m; ③a丄β,la,則l丄β; ④l丄a,m丄a,則l//m.
其中正確的命題的個數(shù)是(      )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是空間三條不同的直線,是空間中不同的平面,則下列命題中不正確的是(   )
A.若,,則
B.若,,則
C.當內的射影,若,則
D.當時,若,則

查看答案和解析>>

同步練習冊答案