【題目】如圖,在四棱錐中,底面為矩形,已知平面,的中點,,過點,連接,,.

1)求證:平面平面;

2)若直線與平面所成角的正切值為,求平面與平面所成銳二面角的余弦值.

【答案】1)證明見解析 2

【解析】

1)證明平面推出,再證明平面推出,然后證明平面從而由線面垂直推出面面垂直;(2)利用線面角的正切值求出AD,以為坐標中心建立空間直角坐標系,分別求出兩個平面的法向量,代入公式即可得解.

1)證明:∵平面,∴,

又∵,,平面,平面,

平面,∴,

又∵,∴,

,∴平面,∴,

又∵,∴平面,

又∵平面,∴平面平面.

2)∵平面,∴與平面所成角為,

,

假設(shè),∴,∴,∴,

為坐標中心建立如圖所示的空間直角坐標系,

,,,,,

由(1)可知平面,∴為平面的法向量,

又∵平面,∴為平面的法向量,

,,

.

∴平面與平面所成角的余弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)是定義域為R的周期函數(shù),最小正周期為2,

f(1x)f(1x),當-1≤x≤0f(x)=-x.

(1)判斷f(x)的奇偶性;

(2)試求出函數(shù)f(x)在區(qū)間[1,2]上的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.為曲線上的動點,點在射線上,且滿足.

(Ⅰ)求點的軌跡的直角坐標方程;

(Ⅱ)設(shè)軸交于點,過點且傾斜角為的直線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)。

(1)求的單調(diào)區(qū)間;

(2)討論零點的個數(shù);

(3)當時,設(shè)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平行六面體中,以頂點為端點的三條棱長都為1,且兩兩夾角為.

(1)求的長;

(2)求異面直線夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),在其定義域內(nèi)有兩個不同的極值點.

(1)求的取值范圍;

(2)記兩個極值點為,且,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體ABCD-A1B1C1D1中,點MN分別在AB1、BC1上,且AM=AB1BN=BC1,則下列結(jié)論:①AA1⊥MN;②A1C1// MN;③MN//平面A1B1C1D1④B1D1⊥MN,其中,

正確命題的個數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).在以坐標原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(1)求直線的普通方程與曲線的直角坐標方程;

(2)若直線與曲線交于兩點,且,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學名著《九章算術(shù)》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:我羊食半馬.馬主曰:我馬食半牛.今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:我羊所吃的禾苗只有馬的一半.馬主人說:我馬所吃的禾苗只有牛的一半.打算按此比例償還,他門各應償還多少?該問題中,1斗為10升,則羊主人應償還多少升粟?(

A.B.C.D.

查看答案和解析>>

同步練習冊答案