【題目】設(shè)等比數(shù)列{}的公比為 q(q > 0,q = 1),前 n 項(xiàng)和為 Sn,且 2a1a3 = a4,數(shù)列{}的前 n 項(xiàng)和 Tn 滿足2Tn = n(bn - 1),n ∈N,b2 = 1.

(1) 求數(shù)列 {},{}的通項(xiàng)公式;

(2) 是否存在常數(shù) t,使得 {Sn+ } 為等比數(shù)列?說明理由;

(3) 設(shè) cn =,對(duì)于任意給定的正整數(shù) k(k ≥2), 是否存在正整數(shù) l,m(k < l < m), 使得 ck,c1,cm 成等差數(shù)列?若存在,求出 l,m(用 k 表示),若不存在,說明理由.

【答案】(1) ; (2)存在,使得是公比為的等比數(shù)列;(3)存在符合題意.

【解析】

(1)利用基本量運(yùn)算可得,利用n≥2時(shí),2bn=2(TnTn﹣1),整理可得;

(2)由Sn,分別討論t時(shí)和t時(shí),由等比數(shù)列的定義證明即可;

(3)假設(shè)對(duì)于任意給定的正整數(shù)kk≥2),存在正整數(shù)l,mklm),使得ckc1,cm成等差數(shù)列.則,整理得:2m+1,取l=2k,即可得解.

(1)等比數(shù)列{an}的公比為qq>0,q1),∵2a1a3a4

,可得a1

anqn﹣1

數(shù)列{bn}的前n項(xiàng)和Tn滿足2Tnnbn﹣1),nN*b2=1.

n≥2時(shí),2bn=2(TnTn﹣1)=nbn﹣1)﹣(n﹣1)(bn﹣1﹣1),

化為:(n﹣2)bn=(n﹣1)bn﹣1+1,

當(dāng)n≥3時(shí),兩邊同除以(n﹣2)(n﹣1),可得:,

利用累加求和可得:b2+1,化為:bn=2n﹣3(n≥3),

當(dāng)n=1時(shí),2b1b1﹣1,解得b1=﹣1,

經(jīng)過驗(yàn)證n=1,2時(shí)也滿足.

bn=2n﹣3.

(2)由(1)可知:an,q>0,q≠1.

Sn

①若t時(shí),則Sn,∴q

即數(shù)列{Sn}是公比為q的等比數(shù)列.

②若t時(shí),則Sn

設(shè)AB.(其中A,B≠0).

q不為常數(shù).

綜上:存在t時(shí),使得數(shù)列{Sn}是公比為q的等比數(shù)列.

(3)由(1)可知:bn=2n﹣3.

,

假設(shè)對(duì)于任意給定的正整數(shù)kk≥2),存在正整數(shù)lmklm),使得ckc1,cm成等差數(shù)列.

,整理得:2m+1,

l=2k,則2m+1=(4k+1)(2k+1),解得m=4k2+3k

即存在l=2km=4k2+3k.符合題意.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在全面抗擊新冠肺炎疫情這一特殊時(shí)期,我市教育局提出“停課不停學(xué)”的口號(hào),鼓勵(lì)學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績(jī)與線上學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,在高三年級(jí)中隨機(jī)選取名學(xué)生進(jìn)行跟蹤問卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不少于小時(shí)的有人,在這人中分?jǐn)?shù)不足分的有人;在每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不足于小時(shí)的人中,在檢測(cè)考試中數(shù)學(xué)平均成績(jī)不足分的占.

1)請(qǐng)完成列聯(lián)表;并判斷是否有的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”;

分?jǐn)?shù)不少于

分?jǐn)?shù)不足

合計(jì)

線上學(xué)習(xí)時(shí)間不少于小時(shí)

線上學(xué)習(xí)時(shí)間不足小時(shí)

合計(jì)

2)在上述樣本中從分?jǐn)?shù)不足于分的學(xué)生中,按照分層抽樣的方法,抽到線上學(xué)習(xí)時(shí)間不少于小時(shí)和線上學(xué)習(xí)時(shí)間不足小時(shí)的學(xué)生共名,若在這名學(xué)生中隨機(jī)抽取人,求這人每周線上學(xué)習(xí)時(shí)間都不足小時(shí)的概率.(臨界值表僅供參考)

(參考公式,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 與圓相交的弦長(zhǎng)等于橢圓 )的焦距長(zhǎng).

(1)求橢圓的方程;

(2)已知為原點(diǎn),橢圓與拋物線)交于兩點(diǎn),點(diǎn)為橢圓上一動(dòng)點(diǎn),若直線軸分別交于、兩點(diǎn),求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績(jī)分布在的范圍內(nèi),規(guī)定分?jǐn)?shù)在50以上(含50)的作文被評(píng)為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖,如圖所示.其中構(gòu)成以2為公比的等比數(shù)列.

1)求的值;

2)填寫下面列聯(lián)表,能否在犯錯(cuò)誤的概率不超過0.01的情況下認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)?

文科生

理科生

合計(jì)

獲獎(jiǎng)

6

不獲獎(jiǎng)

合計(jì)

400

3)將上述調(diào)查所得的頻率視為概率,現(xiàn)從全市參考學(xué)生中,任意抽取2名學(xué)生,記“獲得優(yōu)秀作文”的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

附:,其中.

.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

1)當(dāng)時(shí),求函數(shù)的極值;

2)當(dāng)時(shí),若不等式時(shí)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體中,是正方形,,,且,、分別為棱的中點(diǎn).

(1)求證:平面

(2)求平面和平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某外賣企業(yè)兩位員工今年月某天日派送外賣量的數(shù)據(jù)(單位:件),如莖葉圖所示針對(duì)這天的數(shù)據(jù),下面說法錯(cuò)誤的是( )

A.阿朱的日派送量的眾數(shù)為B.阿紫的日派送量的中位數(shù)為

C.阿朱的日派送量的中位數(shù)為D.阿朱的日派送外賣量更穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)雙曲線的上焦點(diǎn)為,上頂點(diǎn)為,點(diǎn)為雙曲線虛軸的左端點(diǎn),已知的離心率為,且的面積.

(1)求雙曲線的方程;

(2)設(shè)拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為,動(dòng)直線相切于點(diǎn),與的準(zhǔn)線相交于點(diǎn),試推斷以線段為直徑的圓是否恒經(jīng)過軸上的某個(gè)定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:對(duì)于任意,仍為數(shù)列中的項(xiàng),則稱數(shù)列為“回歸數(shù)列”.

1)己知(),判斷數(shù)列是否為“回歸數(shù)列”,并說明理由;

2)若數(shù)列為“回歸數(shù)列”,,,且對(duì)于任意,均有成立.①求數(shù)列的通項(xiàng)公式;②求所有的正整數(shù)s,t,使得等式成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案