【題目】已知函數,其中.
(1)當時,求函數的極值;
(2)當時,若不等式在時恒成立,求實數的取值范圍.
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線y=x2+mx–2與x軸交于A,B兩點,點C的坐標為(0,1).當m變化時,解答下列問題:
(1)能否出現AC⊥BC的情況?說明理由;
(2)證明過A,B,C三點的圓在y軸上截得的弦長為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分,(1)小問7分,(2)小問5分)
設函數
(1)若在處取得極值,確定的值,并求此時曲線在點處的切線方程;
(2)若在上為減函數,求的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設等比數列{}的公比為 q(q > 0,q = 1),前 n 項和為 Sn,且 2a1a3 = a4,數列{}的前 n 項和 Tn 滿足2Tn = n(bn - 1),n ∈N*,b2 = 1.
(1) 求數列 {},{}的通項公式;
(2) 是否存在常數 t,使得 {Sn+ } 為等比數列?說明理由;
(3) 設 cn =,對于任意給定的正整數 k(k ≥2), 是否存在正整數 l,m(k < l < m), 使得 ck,c1,cm 成等差數列?若存在,求出 l,m(用 k 表示),若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著資本市場的強勢進入,互聯網共享單車“忽如一夜春風來”,遍布了各級城市的大街小巷,為了解我市的市民對共享單車的滿意度,某調查機構借助網絡進行了問卷調查,并從參與調查的網友中隨機抽取了人進行分析.若得分低于分,說明不滿意,若得分不低于分,說明滿意,調查滿意度得分情況結果用莖葉圖表示如圖1.
(Ⅰ)根據莖葉圖完成下面列聯表,并根據以上數據,判斷是否有的把握認為滿意度與年齡有關;
滿意 | 不滿意 | 合計 | |
歲以下 | |||
歲以上 | |||
合計 |
(Ⅱ)先采用分層抽樣的方法從歲及以下的網友中選取人,再從這人中隨機選出人,將頻率視為概率,求選出的人中至少有人是不滿意的概率.
(Ⅲ)將頻率視為概率,從參與調查的歲以上的網友中,隨機選取人,記其中滿意度為滿意的人數為,求的分布列和數學期望.
參考格式:,其中.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知橢圓的離心率為,且右焦點到右準線的距離為1.過軸上一點 為常數,且的直線與橢圓交于兩點,與交于點,是弦的中點,直線與交于點.
(1)求橢圓的標準方程;
(2)試判斷以為直徑的圓是否經過定點?若是,求出定點坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩人各進行3次射擊,甲每次擊中目標的概率為,乙每次擊中目標的概率為.
(1)求乙至多擊目標2次的概率;
(2)記甲擊中目標的次數為,求的概率分布列及數學期望;
(3)求甲恰好比乙多擊中目標2次的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com