如圖a所示,在直角梯形ABCD中,AB⊥AD,AD∥BC,F(xiàn)為AD的中點,E在BC上,且EF∥AB.已知AB=AD=CE=2,沿線段EF把四邊形CDEF折起如圖b所示,使平面CDEF⊥平面ABEF.
(1)求證:AF⊥平面CDEF;
(2)求三棱錐C-ADE的體積;
(3)求二面角B-AC-D的余弦值.

(1)證明:∵平面CDFE⊥平面ABEF,且平面CDFE∩平面ABEF=EF,AF⊥FE,AF?平面ABEF,
∴AF⊥平面CDEF;
(2)解:由(1)知,AF為三棱錐A-CDE的高,且AF=1,
又∵AB=CE=2,∴S△CDE=×2×2=2,
故三棱錐C-ADE體積V=AF•S△CDE=;
(3)解:由題意,AD=,CD=,BC=,AB=2,AC=3
∴S△ABC==
∵cos∠DCA===
∴sin∠DCA=
sin∠DCA==
∴二面角B-AC-D的余弦值為==
分析:(1)由平面CDFE⊥平面ABEF,AF⊥FE,根據(jù)面面垂直的性質(zhì)定理可得AF⊥平面CDEF;
(2)AF為三棱錐A-CDE的高,計算出AF的長及底面三角形ADE的面積,代入棱錐體積公式可得答案;
(3)利用二面角B-AC-D的余弦值為,即可求得結(jié)論.
點評:本題考查的知識點是直線與平面垂直的判定,棱錐的體積,考查面面角,解題的關鍵是熟練掌握面面垂直,線面垂直及線線垂直的相互轉(zhuǎn)化,判斷出棱錐的高和底面面積,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在直角梯形ABCD中,|AD|=3,|AB|=4,|BC|=
3
,曲線段DE上任一點到A、B兩點的距離之和都相等.
(1)建立適當?shù)闹苯亲鴺讼,求曲線段DE的方程;
(2)過C能否作一條直線與曲線段DE相交,且所得弦以C為中點,如果能,求該弦所在的直線的方程;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖a所示,在直角梯形ABCD中,AB⊥AD,AD∥BC,F(xiàn)為AD的中點,E在BC上,且EF∥AB.已知AB=AD=CE=2,沿線段EF把四邊形CDEF折起如圖b所示,使平面CDEF⊥平面ABEF.
(1)求證:AF⊥平面CDEF;
(2)求三棱錐C-ADE的體積;
(3)求二面角B-AC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖a所示,在直角梯形ABCD中,AB⊥AD,ADBC,F(xiàn)為AD的中點,E在BC上,且EFAB.已知AB=AD=CE=2,沿線段EF把四邊形CDEF折起如圖b所示,使平面CDEF⊥平面ABEF.
(1)求證:AF⊥平面CDEF;
(2)求三棱錐C-ADE的體積;
(3)求二面角B-AC-D的余弦值.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源:2013年全國名校高考數(shù)學模擬試卷1(理科)(解析版) 題型:解答題

如圖a所示,在直角梯形ABCD中,AB⊥AD,AD∥BC,F(xiàn)為AD的中點,E在BC上,且EF∥AB.已知AB=AD=CE=2,沿線段EF把四邊形CDEF折起如圖b所示,使平面CDEF⊥平面ABEF.
(1)求證:AF⊥平面CDEF;
(2)求三棱錐C-ADE的體積;
(3)求二面角B-AC-D的余弦值.

查看答案和解析>>

同步練習冊答案