精英家教網 > 高中數學 > 題目詳情

【題目】已知等比數列{an}的前三項依次為a﹣2,a+2,a+8,則an=(
A.
B.
C.
D.

【答案】C
【解析】解:∵a﹣2,a+2,a+8為等比數列{an}的前三項,
∴(a+2)2=(a﹣2)(a+8),即a2+4a+4=a2+6a﹣16,
解得:a=10,
∴等比數列{an}的前三項依次為8,12,18,
即等比數列的首項為8,公比為 =
則此等比數列的通項公式an=
故選C
【考點精析】根據題目的已知條件,利用等比數列的通項公式(及其變式)和等比數列的基本性質的相關知識可以得到問題的答案,需要掌握通項公式:;{an}為等比數列,則下標成等差數列的對應項成等比數列;{an}既是等差數列又是等比數列== {an}是各項不為零的常數列.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,直角三角形ABC的頂點坐標A(﹣2,0),直角頂點B(0,﹣2 ),頂點C在x軸上,點P為線段OA的中點,三角形ABC外接圓的圓心為M.

(1)求BC邊所在直線方程;
(2)求圓M的方程;
(3)直線l過點P且傾斜角為 ,求該直線被圓M截得的弦長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩名同學在五次考試中數學成績統(tǒng)計用莖葉圖如表示如圖2所示,則甲的平均成績比乙的平均成績(填高、低、相等);甲成績的方差比乙成績的方差(填大、。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓O的方程為x2+y2=5.
(1)P是直線y= x﹣5上的動點,過P作圓O的兩條切線PC、PD,切點為C、D,求證:直線CD過定點;
(2)若EF、GH為圓O的兩條互相垂直的弦,垂足為M(1,1),求四邊形EGFH面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知{an}是等差數列,Sn是其前n項和,
(1)a2=﹣1,S15=75,求an與Sn
(2)a1+a2+a3+a4=124,an+an1+an2+an3=156,Sn=210,求項數n.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】{an}滿足a1=4,且an=4﹣ (n>1),記bn=
(1)求證:{bn}為等差數列.
(2)求{an}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a,b,c分別為△ABC三個內角A,B,C所對的邊長,且acosB﹣bcosA= c.
(1)求 的值;
(2)若A=60°,求 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義:若函數f(x)對于其定義域內的某一數x0 , 有 f(x0)=x0 , 則稱x0是f (x)的一個不動點.已知函數f(x)=ax2+(b+1)x+b﹣1 (a≠0).
(1)當a=1,b=﹣2時,求函數f(x)的不動點;
(2)若對任意的實數b,函數f(x)恒有兩個不動點,求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上兩個點A,B的橫坐標是函數f(x)的不動點,且A,B兩點關于直線y=kx+ 對稱,求b的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正方形BCDE的邊長為a,已知AB= BC,將△ABE沿邊BE折起,折起后A點在平面BCDE上的射影為D點,則翻折后的幾何體中有如下描述:
① AB與DE所成角的正切值是 ;
②AB∥CE
③VBACE體積是 a3;
④平面ABC⊥平面ADC.
其中正確的有 . (填寫你認為正確的序號)

查看答案和解析>>

同步練習冊答案