分析 觀察分子與多邊形邊的關系及分母中π的系數(shù)與多邊形邊的關系,即可得到答案
解答 解:在△ABC中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$≥$\frac{9}{π}$成立;
在四邊形ABCD中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$+$\frac{1}{D}$≥$\frac{16}{2π}$成成立;
在五邊形ABCDE中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$+$\frac{1}{D}$+$\frac{1}{E}$≥$\frac{25}{3π}$成立.
…
歸納可得:在n邊形A1A2A3…An中,$\frac{1}{A_1}+\frac{1}{A_2}+\frac{1}{A_3}+…+\frac{1}{A_n}≥\frac{n^2}{(n-2)π}$;
故答案為:$\frac{1}{A_1}+\frac{1}{A_2}+\frac{1}{A_3}+…+\frac{1}{A_n}≥\frac{n^2}{(n-2)π}$;
點評 本題考查歸納推理,考查不等式的證明,其中根據(jù)已知分析分子與多邊形邊的關系及分母中π的系數(shù)與多邊形邊的關系,是解答本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $?m∈[{0,1}],x+\frac{1}{x}<{2^m}$ | B. | $?m∈[{0,1}],x+\frac{1}{x}≥{2^m}$ | C. | $?m∈[{0,1}],x+\frac{1}{x}≤{2^m}$ | D. | $?m∈[{0,1}],x+\frac{1}{x}<{2^m}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2+$\frac{4π}{3}$ | B. | 2+$\frac{π}{3}$ | C. | 1+$\frac{4π}{3}$ | D. | 10+8π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
數(shù)據(jù) | 31,12,22,15,20,45,47,32,34,23,28 |
A. | 23、32 | B. | 34、35 | C. | 28、32 | D. | 28、35 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代號x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com