【題目】國(guó)內(nèi)某汽車(chē)品牌一個(gè)月內(nèi)被消費(fèi)者投訴的次數(shù)用表示,據(jù)統(tǒng)計(jì),隨機(jī)變量的概率分布如下:

(1)求的值;

(2)假設(shè)一月與二月被消費(fèi)者投訴的次數(shù)互不影響,求該汽車(chē)品牌在這兩個(gè)月內(nèi)被消費(fèi)者投訴次的概率.

【答案】(1)a=0.2,(2)0.17.

【解析】試題分析:(1)根據(jù)分布列的性質(zhì)可得0.1+0.3+2a+a=1(2)根據(jù)題意問(wèn)題將分為兩類(lèi)“兩個(gè)月內(nèi)有一個(gè)月被投訴2次,另外一個(gè)月被投訴0次”, “兩個(gè)月內(nèi)每月均被投訴1次”然后根據(jù)投訴概率列式解答

試題解析:

解:(1)由概率分布的性質(zhì)有0.1+0.3+2a+a=1,解答a=0.2,

所以X的概率分布為

X

0

1

2

3

P

0.1

0.3

0.4

0.2

(2)設(shè)事件A表示“兩個(gè)月內(nèi)共被投訴2次”,事件表示“兩個(gè)月內(nèi)有一個(gè)月被投訴2次,另外一個(gè)月被投訴0次”,事件表示“兩個(gè)月內(nèi)每月均被投訴1次”

則由事件的獨(dú)立性得 ,

所以.

故該企業(yè)在這兩個(gè)月內(nèi)共被消費(fèi)者投訴2次的概率為0.17.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若,且上單調(diào)遞增,求實(shí)數(shù)的取值范圍

2)是否存在實(shí)數(shù),使得函數(shù)上的最小值為?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是兩條不同的直線, 是三個(gè)不同的平面,給出下列四個(gè)命題:

①若,則 ②若,則

③若,則 ④若,則

其中正確命題的序號(hào)是( )

A. ①和② B. ②和③ C. ③和④ D. ①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線,以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線

(1)將曲線上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長(zhǎng)為原來(lái)的倍后得到曲線.試寫(xiě)出直線的直角坐標(biāo)方程和曲線的參數(shù)方程:

(2)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且滿足:

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)若存在,使得 成等差數(shù)列,試判斷:對(duì)于任意的,且是否成等差數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司做了用戶(hù)對(duì)其產(chǎn)品滿意度的問(wèn)卷調(diào)查,隨機(jī)抽取了20名用戶(hù)的評(píng)分,得到圖3所示莖葉圖,對(duì)不低于75的評(píng)分,認(rèn)為用戶(hù)對(duì)產(chǎn)品滿意,否則,認(rèn)為不滿意,

(Ⅰ)根據(jù)以上資料完成下面的2×2列聯(lián)表,若據(jù)此數(shù)據(jù)算得,則在犯錯(cuò)的概率不超過(guò)5%的前提下,你是否認(rèn)為“滿意與否”與“性別”有關(guān)?

附:

(Ⅱ) 估計(jì)用戶(hù)對(duì)該公司的產(chǎn)品“滿意”的概率;

(Ⅲ) 該公司為對(duì)客戶(hù)做進(jìn)一步的調(diào)查,從上述對(duì)其產(chǎn)品滿意的用戶(hù)中再隨機(jī)選取2人,求這兩人都是男用戶(hù)或都是女用戶(hù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為實(shí)數(shù).

)當(dāng)時(shí),求函數(shù)上的最大值和最小值;

)求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x﹣﹣(a+2)lnx,其中實(shí)數(shù)a≥0.

(1)若a=0,求函數(shù)f(x)在x∈[1,3]上的最值;

(2)若a>0,討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的方程22x+2xa+a+1=0有實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案