【題目】已知正四面體ABCD中,E是AB的中點(diǎn),則異面直線CE與BD所成角的余弦值為(
A.
B.
C.
D.

【答案】B
【解析】解:如圖, 取AD中點(diǎn)F,連接EF,CF,
∵E為AB的中點(diǎn),
∴EF∥DB,
則∠CEF為異面直線BD與CE所成的角,
∵ABCD為正四面體,E,F(xiàn)分別為AB,AD的中點(diǎn),
∴CE=CF.
設(shè)正四面體的棱長為2a,
則EF=a,
CE=CF=
在△CEF中,由余弦定理得:
=
故選:B.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解異面直線及其所成的角的相關(guān)知識,掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點(diǎn)M恰好是AC中點(diǎn),又PA=AB=4,∠CDA=120°,點(diǎn)N在線段PB上,且PN=
(Ⅰ)求證:BD⊥PC;
(Ⅱ)求證:MN∥平面PDC;
(Ⅲ)求二面角A﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a∈R,若x>0時(shí)均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 上單調(diào)遞增,

(1)若函數(shù)有實(shí)數(shù)零點(diǎn),求滿足條件的實(shí)數(shù)的集合;

(2)若對于任意的時(shí),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若函數(shù)的圖像在點(diǎn)處有相同的切線,求的值;

(Ⅱ)當(dāng)時(shí),恒成立,求整數(shù)的最大值;

(Ⅲ)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合M={x|﹣2<x<2},N={x|x2﹣2x﹣3<0},則集合M∩N=(
A.{x|x<﹣2}
B.{x|x>3}
C.{x|﹣1<x<2}
D.{x|2<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圖1是某縣參加2007年高考的學(xué)生身高條形統(tǒng)計(jì)圖,從左到右的各條形表示的學(xué)生人數(shù)依次記為A1 , A2 , …,A10(如A2表示身高(單位:cm)在[150,155)內(nèi)的學(xué)生人數(shù))圖2是統(tǒng)計(jì)圖1中身高在一定范圍內(nèi)學(xué)生人數(shù)的一個(gè)算法流程圖.現(xiàn)要統(tǒng)計(jì)身高在160~180cm(含160cm,不含180cm)的學(xué)生人數(shù),那么在流程圖中的判斷框內(nèi)應(yīng)填寫的條件是(

A.i<6
B.i<7
C.i<8
D.i<9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+|x﹣a|+1,x∈R,a∈R.
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的最小值;
(Ⅱ)若函數(shù)f(x)的最小值為g(a),令m=g(a),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四邊形,且AB=1,BC=2,∠ABC=60°,E為BC的中點(diǎn),AA1⊥平面ABCD. (Ⅰ)證明:平面A1AE⊥平面A1DE;
(Ⅱ)若DE=A1E,試求二面角E﹣A1C﹣D的余弦值.

查看答案和解析>>

同步練習(xí)冊答案