下列函數(shù)在(0,+∞)上是減函數(shù)的是________(請將所有正確的序號都填上).
①y=-x2-2x+3;②y=log0.5x-1;③y=x-1;④y=2-x.
①②③④
分析:四個(gè)函數(shù)分別是二次函數(shù),對數(shù)函數(shù)、冪函數(shù)以及指數(shù)函數(shù),依據(jù)相應(yīng)函數(shù)的性質(zhì)判斷其單調(diào)性即可.
解答:①y=-x
2-2x+3的圖象開口向下,其對稱軸是x=-1,∴數(shù)在(0,+∞)上是減函數(shù),正確;
②y=log
0.5x-1底數(shù)小于1,在其定義域(1,+∞)上是減函數(shù),故正確;
③y=x
-1的指數(shù)小于0,故在(0,+∞)上是減函數(shù),正確;
④y=2
-x=
,底數(shù)小于1,故在(0,+∞)上是減函數(shù),正確;
故答案為①②③④
點(diǎn)評:本題的考點(diǎn)是函數(shù)的單調(diào)性的判斷與證明,求解本題關(guān)鍵是熟知基本初等函數(shù)的性質(zhì)以及將函數(shù)化為標(biāo)準(zhǔn)形式.