【題目】中國有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長方體、正方體或圓柱體,但南北朝時(shí)期的官員獨(dú)孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學(xué)的對稱美.圖2是一個棱數(shù)為48的半正多面體,它的所有頂點(diǎn)都在同一個正方體的表面上,且此正方體的棱長為1.則該半正多面體共有________個面,其棱長為_________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班同學(xué)利用國慶節(jié)進(jìn)行社會實(shí)踐,對的人群隨機(jī)抽取
人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”.得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:
組數(shù) | 分組 | 低碳組的人數(shù) | 占本組的頻率 |
第一組 | 120 | 0.6 | |
第二組 | 195 | ||
第三組 | 100 | 0.5 | |
第四組 | 0.4 | ||
第五組 | 30 | 0.3 | |
第六組 | 15 | 0.3 |
(1)補(bǔ)全頻率分布直方圖,并求,
,
的值;
(2)求年齡段人數(shù)的中位數(shù)和眾數(shù);
(3)從歲年齡段的“低碳族”中采用分層抽樣法抽取6人參加戶外低碳體驗(yàn)活動,其中選取3人作為領(lǐng)隊(duì),求選取的3名領(lǐng)隊(duì)中年齡都在
歲的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體,
,
,且
兩兩垂直.給出下列四個命題:
①三棱錐的體積為定值;
②經(jīng)過四點(diǎn)的球的直徑為
;
③直線∥平面
;
④直線所成的角為
;
其中真命題的個數(shù)是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】試用恰當(dāng)?shù)姆椒ū硎鞠铝屑?/span>.
(1)使函數(shù)有意義的x的集合;
(2)不大于12的非負(fù)偶數(shù);
(3)滿足不等式的解集;
(4)由大于10小于20的所有整數(shù)組成的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn).
(1)若一條直線經(jīng)過點(diǎn),且原點(diǎn)到直線的距離為
,求該直線的一般式方程;
(2)求過點(diǎn)且與原點(diǎn)距離最大的直線的一般式方程,并求出最大距離是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了加強(qiáng)中學(xué)生實(shí)踐、創(chuàng)新和團(tuán)隊(duì)建設(shè)能力的培養(yǎng),促進(jìn)教育教學(xué)改革,市教育局舉辦了全市中學(xué)生創(chuàng)新知識競賽,某中學(xué)舉行了選拔賽,共有150名學(xué)生參加,為了了解成績情況,從中抽取50名學(xué)生的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),請你根據(jù)尚未完成的頻率分布表,解答下列問題:
(1)完成頻率分布表(直接寫出結(jié)果);
(2)若成績在90.5分以上的學(xué)生獲一等獎,試估計(jì)全校獲一等獎的人數(shù),現(xiàn)在從全校所有獲一等獎的同學(xué)中隨機(jī)抽取2名同學(xué)代表學(xué)校參加競賽,某班共有2名同學(xué)榮獲一等獎,求該班同學(xué)恰有1人參加競賽的概率.
分組 | 頻數(shù) | 頻率 | |
第1組 | [60.5,70.5) | 0.26 | |
第2組 | [70.5,80.5) | 17 | |
第3組 | [80.5,90.5) | 18 | 0.36 |
第4組 | [90.5,100.5] | ||
合計(jì) | 50 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓
的離心率為
,點(diǎn)
在橢圓
上.
求橢圓
的方程;
已知
與
為平面內(nèi)的兩個定點(diǎn),過點(diǎn)
的直線
與橢圓
交于
兩點(diǎn),求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若對任意的正整數(shù),總存在正整數(shù)
,使得數(shù)列
的前
項(xiàng)和
,則稱
是“回歸數(shù)列”.
()①前
項(xiàng)和為
的數(shù)列
是否是“回歸數(shù)列”?并請說明理由.②通項(xiàng)公式為
的數(shù)列
是否是“回歸數(shù)列”?并請說明理由;
()設(shè)
是等差數(shù)列,首項(xiàng)
,公差
,若
是“回歸數(shù)列”,求
的值.
()是否對任意的等差數(shù)列
,總存在兩個“回歸數(shù)列”
和
,使得
成立,請給出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線:
,
:
,則下面結(jié)論正確的是( )
A.把上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移
個單位長度,得到曲線
B.把上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移
個單位長度,得到曲線
C.把上各點(diǎn)的橫坐標(biāo)縮短到原來的
倍,縱坐標(biāo)不變,再把得到的曲線向左平移
個單位長度,得到曲線
D.把上各點(diǎn)的橫坐標(biāo)縮短到原來的
倍,縱坐標(biāo)不變,再把得到的曲線向右平移
個單位長度,得到曲線
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com