如圖所示的長方體中,底面是邊長為的正方形,的交點,,是線段的中點.
(1)求證:平面;
(2)求三棱錐的體積.

(1)證明過程詳見試題解析;(2)三棱錐的體積為

解析試題分析:(1)連接,要證平面,需證,而易證;
(2)用割補法,用長方體的體積減去四個三棱錐的體積即可,求得結(jié)果為.
試題解析:(1) 連結(jié),如圖,
分別是、的中點,是矩形,
∴四邊形是平行四邊形,
.               2分
平面,平面,
平面.         6分
(2) 解法1 連結(jié),∵正方形的邊長為2,
,∴,,則,
.                                       8分
又∵在長方體中,,,且,
平面,又平面,
,又,              
平面,即為三棱錐的高.      10分

.                 12分
解法2: 三棱錐是長方體割去三棱錐、三棱錐、三棱錐、三棱錐后所得,而三棱錐、、、是等底等高,故其體積相等.

考點:線面平行的判定定理、空間幾何體的表面積和體積.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖示,在四棱錐A-BHCD中,AH⊥面BHCD,此棱錐的三視圖如下:

(1)求二面角B-AC-D的余弦弦值;
(2)在線段AC上是否存在一點E,使ED與面BCD成45°角?若存在,確定E的位置;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在斜三棱柱中,平面平面ABC,,.
(1)求證:;
(2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD為正方形,DA⊥面ABP,AB=1,PA=2,∠PAB=600,E為PA的中點,F為PC上不同于P、C的任意一點.
(1)求證:PC∥面EBD
(2)求異面直線AC與PB間的距離
(3)求三棱錐E-BDF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,三棱柱ABC—A1B1C1的側(cè)面AA1B1B為正方形,側(cè)面BB1C1C為菱形,∠CBB1=60°,AB⊥B1C.
(1)求證:平面AA1B1B⊥平面BB1C1C;
(2)若AB=2,求三棱柱ABC—A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,底面是邊長為2的菱形,且,以為底面分別作相同的正三棱錐,且.

(1)求證:平面
(2)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,PA⊥平面ABCD,ABCD是矩形,AB=1,,點F是PB的中點,點E在邊BC上移動.

(1)若,求證:;
(2)若二面角的大小為,則CE為何值時,三棱錐的體積為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,垂直于矩形所在平面,,

(1)求證:;
(2)若矩形的一個邊,,則另一邊的長為何值時,三棱錐的體積為?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,直三棱柱ABCA1B1C1中,D,E分別是AB,BB1的中點.

(1)證明:BC1∥平面A1CD;
(2)設(shè)AA1=AC=CB=2,AB=2,求三棱錐CA1DE的體積.

查看答案和解析>>

同步練習冊答案