如圖,三棱柱ABC—A1B1C1的側面AA1B1B為正方形,側面BB1C1C為菱形,∠CBB1=60°,AB⊥B1C.
(1)求證:平面AA1B1B⊥平面BB1C1C;
(2)若AB=2,求三棱柱ABC—A1B1C1的體積.

(1)見解析   (2)2

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知正三棱錐V-ABC的正視圖、側視圖和俯視圖如圖所示.

(1)畫出該三棱錐的直觀圖;
(2)求出側視圖的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2014·貴陽模擬)一個幾何體是由圓柱ADD1A1和三棱錐E-ABC組合而成,點A,B,C在圓O的圓周上,其正(主)視圖,側(左)視圖的面積分別為10和12,如圖所示,其中EA⊥平面ABC,AB⊥AC,AB=AC.AE=2.

(1)求證:AC⊥BD.
(2)求三棱錐E-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直角梯形中,°,,平面,,,設的中點為,

(1) 求證:平面;
(2) 求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示的長方體中,底面是邊長為的正方形,的交點,,是線段的中點.
(1)求證:平面;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=6,BD=8,E是PB上任意一點,△AEC面積的最小值是3.

(1)求證:AC⊥DE;
(2)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直三棱柱ABC-A1B1C1中,D、E分別是AB、BB1的中點.
 
(1)證明:BC1//平面A1CD;
(2)設AA1=AC=CB=2,AB=,求三棱錐C一A1DE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

設OA是球O的半徑,M是OA的中點,過M且與OA成角的平面截球O的表面得到圓C.若圓C的面積等于,則球O的表面積等于         .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,底面邊長為a,高為h的正三棱柱ABC-A1B1C1,其中D是AB的中點,E是BC的三等分點.求幾何體BDEA1B1C1的體積.

查看答案和解析>>

同步練習冊答案