如圖示,在四棱錐A-BHCD中,AH⊥面BHCD,此棱錐的三視圖如下:
(1)求二面角B-AC-D的余弦弦值;
(2)在線段AC上是否存在一點(diǎn)E,使ED與面BCD成45°角?若存在,確定E的位置;若不存在,說明理由。
(1) (2)不存在
解析試題分析:(1)觀察三視圖,得到邊長以及線面關(guān)系,取AC的中點(diǎn)
M,過M作MN∥CD交AD于N,則是所求二面角的平面角,
(2)假設(shè)存在,把“ED與面BCD成45°角”作為條件,進(jìn)行計(jì)算.
試題解析:(1)由AH⊥面BHCD及三視圖知:AH=BH=HC=1,,取AC的中點(diǎn)M,過M作MN∥CD交AD于N,則是所求二面角的平面角,,, ;
(2)假設(shè)在線段AC上存在點(diǎn)E合題意,令E在HC上的射影為F,設(shè)(),則,矛盾。所以,不存在(注:本題也可用向量法)
考點(diǎn):二面角,線面角.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,為圓的直徑,為圓周上異于、的一點(diǎn),垂直于圓所在的平面,于
點(diǎn),于點(diǎn).
(1)求證:平面;
(2)若,,求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示的長方體中,底面是邊長為的正方形,為與的交點(diǎn),,是線段的中點(diǎn).
(1)求證:平面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
設(shè)OA是球O的半徑,M是OA的中點(diǎn),過M且與OA成角的平面截球O的表面得到圓C.若圓C的面積等于,則球O的表面積等于 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com