A. | 1 | B. | $\frac{\sqrt{5}}{5}$ | C. | 2 | D. | $\frac{2\sqrt{5}}{5}$ |
分析 作出不等式組對應的平面區(qū)域,利用數(shù)形結合以及點到直線的距離公式進行求解即可.
解答 解:作出不等式組對應的平面區(qū)域,
z=$\sqrt{{x}^{2}+{y}^{2}-2x+1}$=$\sqrt{(x-1)^{2}+{y}^{2}}$
則z的幾何意義是區(qū)域內的點到點D(1,0)的距離,
由圖象知D到直線2x-y=0的距離最小,
此時d=$\frac{|2-0|}{\sqrt{{2}^{2}+1}}=\frac{2}{\sqrt{5}}$=$\frac{2\sqrt{5}}{5}$,
故選:D
點評 本題主要考查線性規(guī)劃的應用以及距離的求解,利用數(shù)形結合以及點到直線的距離公式是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {2,3,4,5} | B. | {2,3,4} | C. | {3,4,5} | D. | {2,3} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|1<x≤2} | B. | {x|1<x<2} | C. | {x|x>2} | D. | {x|x≤2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 34 | B. | 32 | C. | 30 | D. | 28 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {0,1,2} | B. | {(0,1),(1,2)} | C. | {x|x≥1} | D. | R |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | -$\sqrt{2}$ | C. | ±$\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com