8.已知集合M={2,3,4,5},N={x|sinx>0},則M∩N為( 。
A.{2,3,4,5}B.{2,3,4}C.{3,4,5}D.{2,3}

分析 根據(jù)三角函數(shù)性質(zhì)求出集合N,再與集合M進(jìn)行交集運(yùn)算即可.

解答 解:M={2,3,4,5},N={x|sinx>0}={x|2kπ<x<2kπ+π},k∈Z,
當(dāng)k=0時(shí),N=(0,π),當(dāng)k=1時(shí),N=(2π,3π),
∴M∩N={2,3},
故選:D.

點(diǎn)評(píng) 本題考查三角函數(shù)的性質(zhì)、集合的交集運(yùn)算.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某班甲、乙兩名同學(xué)參加100米達(dá)標(biāo)訓(xùn)練,在相同條件下兩人10次訓(xùn)練的成績(jī)(單位:秒)如下:
12345678910
11.612.213.213.914.011.513.114.511.714.3
12.313.314.311.712.012.813.213.814.112.5
(1)請(qǐng)完成樣本數(shù)據(jù)的莖葉圖(在答題卷中);如果從甲、乙兩名同學(xué)中選一名參加學(xué)校的100米比賽,從成績(jī)的穩(wěn)定性方面考慮,選派誰(shuí)參加比賽更好,并說(shuō)明理由(不用計(jì)算,可通過(guò)統(tǒng)計(jì)圖直接回答結(jié)論);
(2)從甲、乙兩人的10次訓(xùn)練成績(jī)中各隨機(jī)抽取一次,求抽取的成績(jī)中至少有一個(gè)比12.8秒差的概率;
(3)經(jīng)過(guò)對(duì)甲、乙兩位同學(xué)的多次成績(jī)的統(tǒng)計(jì),甲、乙的成績(jī)都均勻分布在區(qū)間[11,15](單位:秒)之內(nèi),現(xiàn)甲、乙比賽一次,求甲、乙成績(jī)之差的絕對(duì)值小于0.8秒的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.某幼兒園從新入學(xué)的女童中,隨機(jī)抽取50名,其身高(單位:cm)的頻率分布表如表:
分組(身高)[80,85)[85,90)[90,95)[95,100)
頻數(shù)(人數(shù))5102015
(1)完成下列頻率分布直方圖;
(2)用分層抽樣的方法從身高在[80,85)和[95,100)的女童中共抽取4人,其中身高在[80,85)的有幾人?
(3)在(2)中抽取的4個(gè)女童中,任取2名,求身高在[80,85)和[95,100)中各有1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)函數(shù)f(x)=sin(2x+$\frac{π}{6}$)+cos2x.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若f($\frac{α}{2}$-$\frac{π}{6}$)=$\frac{3\sqrt{3}}{5}$,且α∈($\frac{π}{2}$,π),求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)拋物線C1:y2=2px(p>0),點(diǎn)M在拋物線C1上,且|FM|=10,若以線段FM為直徑的圓C2過(guò)點(diǎn)A(0,3),則圓心C2到拋物線的準(zhǔn)線的距離為( 。
A.6B.6或14C.14D.2或18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知正項(xiàng)數(shù)列{an}滿足2a1+3a2+a3=1,則$\frac{1}{{{a_1}+{a_2}}}$與$\frac{1}{{{a_2}+{a_3}}}$的等差中項(xiàng)最小為$\frac{{3+2\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知定義在R上的函數(shù)f(x)=$\left\{\begin{array}{l}x({|x|+1}),x<1\\{log_2}x+1,x≥1\end{array}$,若直線y=a與函數(shù)y=f(x)的圖象恰有兩個(gè)交點(diǎn),則實(shí)數(shù)a的取值范圍是[1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知集合A={x|x2-x-2≤0},集合B={x|1<x≤3},則A∪B={x|-1≤x≤3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)點(diǎn)P(x,y)在不等式組$\left\{\begin{array}{l}{x≥0,}&{\;}\\{2x-y≤0,}&{\;}\\{x+y-3≤0}&{\;}\end{array}\right.$表示的平面區(qū)域上,則z=$\sqrt{{x}^{2}+{y}^{2}-2x+1}$的最小值為( 。
A.1B.$\frac{\sqrt{5}}{5}$C.2D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案