已知空間向量
a
=(-
1
3
1
6
,-
1
6
),
b
=(-
1
3
,-
1
3
,-
2
3
),則
a
b
的夾角為( 。
A、60°B、120°
C、90°D、30°
考點(diǎn):空間向量的數(shù)量積運(yùn)算
專題:空間向量及應(yīng)用
分析:由已知條件利用cos<
a
b
>=
a
b
|
a
|•|
b
|
,能求出
a
b
的夾角.
解答: 解:∵
a
=(-
1
3
1
6
,-
1
6
),
b
=(-
1
3
,-
1
3
,-
2
3
),
∴cos<
a
b
>=
a
b
|
a
|•|
b
|

=
1
9
-
1
18
+
1
9
1
6
2
3
=
1
2
,
a
b
的夾角為60°.
故選:A.
點(diǎn)評(píng):本題考查空間中兩個(gè)向量的夾角的求法,是基礎(chǔ)題,解題時(shí)要注意cos<
a
b
>=
a
b
|
a
|•|
b
|
的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E是棱BC的中點(diǎn),點(diǎn)F是棱CD上的動(dòng)點(diǎn).
(Ⅰ)試確定點(diǎn)F的位置,使得D1E⊥平面AB1F;
(Ⅱ)當(dāng)D1E⊥平面AB1F時(shí),求二面角C1-EF-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于平面向量
a
、
b
c
,有下列四種說法:
①若
a
≠0,
a
b
=0,則
b
=0;
②若
a
≠0,
a
b
=
a
c
,則
b
=
c
;
③對(duì)任意向量
a
、
b
c
,有(
a
b
)•
c
=
a
•(
b
c
);
④若
a
b
b
c
,則
a
c
,
其中正確的個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3x-8+log2x的零點(diǎn)一定位于的區(qū)間為( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(diǎn)(0,1),且有唯一的零點(diǎn)-1.
(Ⅰ)求f(x)的表達(dá)式;  
(Ⅱ)當(dāng)x∈[-2,2]時(shí),求函數(shù)F(x)=f(x)-kx的最小值g(k).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若{2,3}?M?{1,2,3,4,5},則M的個(gè)數(shù)為( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(0,-1),
b
=(cos10°,sin10°),則向量
a
b
的夾角大小為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以(1,3)為圓心,并且與直線3x-4y-6=0相切的圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2sinωx(ω>0)在區(qū)間[0,
π
4
]
上單調(diào)遞增,且在這個(gè)區(qū)間上的最大值是
3
,那么ω=( 。
A、
2
3
B、
4
3
C、2
D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案