7.已知點(diǎn)O為△ABC內(nèi)一點(diǎn),∠AOB=120°,OA=1,OB=2,過(guò)O作OD垂直AB于點(diǎn)D,點(diǎn)E為線(xiàn)段OD的中點(diǎn),則$\overrightarrow{OE}$•$\overrightarrow{EA}$的值為( 。
A.$\frac{5}{14}$B.$\frac{2}{7}$C.$\frac{3}{14}$D.$\frac{3}{28}$

分析 由題意可得 $\overrightarrow{OD}•\overrightarrow{AD}$=0,計(jì)算$\overrightarrow{OE}$•$\overrightarrow{EA}$=$\frac{\overrightarrow{OD}}{2}$•(-$\overrightarrow{AE}$)=$\frac{{|\overrightarrow{OD}|}^{2}}{4}$.△AOB中,利用余弦定理可得AB=$\sqrt{7}$,再利用面積法求得OD=$\frac{\sqrt{3}}{\sqrt{7}}$,從而求得$\overrightarrow{OE}$•$\overrightarrow{EA}$=$\frac{{|\overrightarrow{OD}|}^{2}}{4}$ 的值.

解答 解:如圖:點(diǎn)O為△ABC內(nèi)一點(diǎn),∠AOB=120°,OA=1,OB=2,
過(guò)O作OD垂直AB于點(diǎn)D,點(diǎn)E為線(xiàn)段OD的中點(diǎn),∴$\overrightarrow{OD}•\overrightarrow{AD}$=0,
則$\overrightarrow{OE}$•$\overrightarrow{EA}$=$\frac{\overrightarrow{OD}}{2}$•(-$\overrightarrow{AE}$)=-$\frac{1}{2}$•$\overrightarrow{OD}$•$\frac{\overrightarrow{AO}+\overrightarrow{AD}}{2}$=-$\frac{\overrightarrow{AO}•\overrightarrow{OD}+\overrightarrow{OD}•\overrightarrow{AD}}{4}$
=$\frac{\overrightarrow{OA}•\overrightarrow{OD}}{4}$=$\frac{|\overrightarrow{OA}|•|\overrightarrow{OD}|•cos∠AOD}{4}$=$\frac{{|\overrightarrow{OD}|}^{2}}{4}$.
△AOB中,利用余弦定理可得AB2=OA2+OB2-2OA•OB•cos120°=1+4+2=7,∴AB=$\sqrt{7}$.
∵S△AOB=$\frac{1}{2}•AB•OD$=$\frac{1}{2}$OA•OB•sin120°,可得$\frac{1}{2}•\sqrt{7}$•OD=$\frac{1}{2}•1•2•\frac{\sqrt{3}}{2}$,
∴OD=$\frac{\sqrt{3}}{\sqrt{7}}$,∴$\overrightarrow{OE}$•$\overrightarrow{EA}$=$\frac{{|\overrightarrow{OD}|}^{2}}{4}$=$\frac{3}{28}$,
故選:D.

點(diǎn)評(píng) 本題主要考查兩個(gè)向量的加減法的法則,以及其幾何意義,兩個(gè)向量的數(shù)量積的定義,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合A={5},B={4,5},則A∩B=( 。
A.B.{4}C.{5}D.{4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.從某地區(qū)一次中學(xué)生知識(shí)競(jìng)賽中,隨機(jī)抽取了30名學(xué)生的成績(jī),繪成如圖所示的2×2列聯(lián)表 (甲組優(yōu)秀,乙組一般):
甲組乙組合計(jì)
男生76
女生512
合計(jì)
(1)試問(wèn)有沒(méi)有90%的把握認(rèn)為成績(jī)分在甲組或乙組與性別有關(guān);
(2)①如果用分層抽樣的方法從甲組和乙組中抽取5人,再?gòu)?人中隨機(jī)抽取2人,那么至少有1人在甲組的概率是多少?
②用樣本估計(jì)總體,把頻率作為概率,若從該地區(qū)所有的中學(xué)(人數(shù)很多)中隨機(jī)抽取3人,用ξ表示所選3人中甲組的人數(shù),試寫(xiě)出ξ的分布列,并求出ξ的數(shù)學(xué)期望.K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$,其中n=a+b+c+d
獨(dú)立性檢驗(yàn)臨界表:
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.冪函數(shù)f(x)=xa的圖象經(jīng)過(guò)點(diǎn)(8,2),則f(${\frac{1}{8}}$)的值為(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)的對(duì)應(yīng)關(guān)系如表所示,數(shù)列{an}滿(mǎn)足a1=3,an+1=f(an),則a2016=1.
x123
f(x)321

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.等比數(shù)列{an}中,已知a1=1,a4=8,若a3,a5分別為等差數(shù)列{bn}的第4項(xiàng)和第16項(xiàng).
(1)求數(shù)列{an}﹑{bn}的通項(xiàng)公式;
(2)令cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知集合A={1,2,3,4},B={0,1,3,5},則A∩B等于( 。
A.{1,3}B.{2,4}C.{0,5}D.{0,1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.對(duì)于任意的x∈R,e|2x+1|+m≥0恒成立,則實(shí)數(shù)m的取值范圍是[-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù)f(x)=ln(x2-x)的單調(diào)遞增區(qū)間是(1,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案