7.《九章算術(shù)》中,將底面是直角形的直三棱柱稱之為“塹堵”,已知某“塹堵”的三視圖如圖所示,俯視圖中虛線平分矩形的面積,則該“塹堵”的表面積為(  )
A.4+2$\sqrt{2}$B.2C.4+4$\sqrt{2}$D.6+4$\sqrt{2}$

分析 根據(jù)題意和三視圖知幾何體是一個放倒的直三棱柱,由三視圖求出幾何元素的長度,由面積公式求出幾何體的表面積.

解答 解:根據(jù)題意和三視圖知幾何體是一個放倒的直三棱柱ABC-A′B′C′,
底面是一個直角三角形,兩條直角邊分別是$\sqrt{2}$、斜邊是2,
且側(cè)棱與底面垂直,側(cè)棱長是2,
∴幾何體的表面積S=2×$\frac{1}{2}×2×1$+2×2+2×$2×\sqrt{2}$=6+4$\sqrt{2}$,
故選:D.

點評 本題考查三視圖求幾何體的表面積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.a(chǎn)>0是不等式a2-2a<0成立的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=ln(x2-5x+6)的單調(diào)增區(qū)間是(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.一個袋中裝有大小相同的5個白球和3個紅球,現(xiàn)在不放回的取2次球,每次取出一個球,記“第1次拿出的是白球”為事件A,“第2次拿出的是白球”為事件B,則事件A發(fā)生的條件下事件B發(fā)生的概率是( 。
A.$\frac{4}{7}$B.$\frac{5}{16}$C.$\frac{5}{8}$D.$\frac{5}{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知tan(π-α)=2
(1)求tanα的值;   
(2)求$\frac{sinα+cosα}{sinα-cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,角A、B、C的對邊分別為a、b、c,若cos(π-A+B)+2sinAsinB<0,那么△ABC三邊長a、b、c之間滿足的關(guān)系是( 。
A.a2+b2<c2B.b2+c2<a2C.2ab>c2D.2bc>a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.△ABC中,∠C=90°,點M在邊BC上,且滿足BC=3BM,若sin∠BAM=$\frac{1}{5}$,則sin∠BAC=( 。
A.$\frac{{\sqrt{15}}}{5}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.(1-x)4(1-$\sqrt{x}$)3的展開式中x2的系數(shù)是( 。
A.-3B.-6C.0D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知f(x)是定義在R上的函數(shù),若函數(shù)y=f(x+1)為偶函數(shù),且當(dāng)x≥1時,有f(x)=1-2x,設(shè)a=f(${\frac{3}{2}}$),b=f(${\frac{2}{3}}$),c=f(${\frac{1}{3}}$),則(  )
A.c<b<aB.b<a<cC.c<a<bD.a<c<b

查看答案和解析>>

同步練習(xí)冊答案