2.已知tan(π-α)=2
(1)求tanα的值;   
(2)求$\frac{sinα+cosα}{sinα-cosα}$的值.

分析 (1)利用誘導(dǎo)公式化簡求解正切函數(shù)值即可.
(2)利用同角三角函數(shù)基本關(guān)系式,化簡求解即可.

解答 解:(1)∵tan(π-α)=-tanα=2,…(3分)
∴tanα=-2.…(5分)
(2)$\frac{sinα+cosα}{sinα-cosα}$=$\frac{tanα+1}{tanα-1}$,…(9分)
=$\frac{-2+1}{-2-1}=\frac{1}{3}$.  …(12分)

點(diǎn)評 本題考查誘導(dǎo)公式以及同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知平面直角坐標(biāo)系xOy的原點(diǎn)和x軸的正半軸分別與極坐標(biāo)系的極點(diǎn)和極軸重合,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2t+3}\\{y=3t}\end{array}\right.$(t為參數(shù)),圓的極坐標(biāo)方程為ρ2-4ρsinθ+3=0,若P,Q分別在直線l和圓上運(yùn)動,則|PQ|的最小值為(  )
A.$\sqrt{13}+2$B.$\sqrt{13}-2$C.$\sqrt{13}+1$D.$\sqrt{13}-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知定義在(0,+∞)上的函數(shù)f(x)=2x+$\frac{10}{x}$.設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過點(diǎn)P分別作直線y=2x和y軸的垂線,垂足分別為M、N.
(1)|PM|•|PN|是否為定值?若是,求出該定值;若不是,說明理由;
(2)設(shè)P(x0,y0),M(t,2t),試用x0表示t,并求出線段OM的長(結(jié)果用含x0的式子表示);
(3)設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.
(提示:當(dāng)x>0,k>0時(shí),恒有x+$\frac{k}{x}≥2\sqrt{k}$(當(dāng)且僅當(dāng)x=$\sqrt{k}$時(shí),等號成立)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.過點(diǎn)M(1,1)作斜率為-$\frac{1}{4}$的直線與橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),相交于A、B兩點(diǎn),若M是線段AB的中點(diǎn),則橢圓C的離心率為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.2014年11月1日早上,“嫦娥五號試驗(yàn)星”成功返回地面,標(biāo)志著我國探月工程三期任務(wù)圓滿完成.為了讓大家更好的了解我國的探月工程,某班特邀科技專家進(jìn)行講座,對我國探月工程進(jìn)行了詳細(xì)的分析后,由5名男生、3名女生組成一個(gè)研討興趣小組,若從中選取4名同學(xué),每個(gè)同學(xué)隨機(jī)選取專家老師指定的3個(gè)問題中的一個(gè)進(jìn)行發(fā)言,則被選取的同學(xué)中恰好有2名女生,且3個(gè)問題都有人發(fā)言的不同情況有(  )種.
A.720B.840C.960D.1080

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.《九章算術(shù)》中,將底面是直角形的直三棱柱稱之為“塹堵”,已知某“塹堵”的三視圖如圖所示,俯視圖中虛線平分矩形的面積,則該“塹堵”的表面積為(  )
A.4+2$\sqrt{2}$B.2C.4+4$\sqrt{2}$D.6+4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖所示,在斜度一定的山坡上的一點(diǎn)A測得山頂上一建筑物頂端C對于山坡的斜度為15°,向山頂前進(jìn)100米后到達(dá)點(diǎn)B,又從點(diǎn)B測得斜度為45°,建筑物的高CD為50米.
(1)求BC長;
(2)求此山對于地平面的傾斜角θ(計(jì)算出函數(shù)值即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.不等式(x+2)3(x+3)4(x-1)<0的解集是( 。
A.-2<x<1B.-3<x<1C.-3<x<-2D.x>1或x<-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知A,B,C,D為圓O上的四點(diǎn),直線PA切圓O于點(diǎn)A,PA∥BD,AC與BD相交于G點(diǎn).
(1)求證:點(diǎn)A為劣弧$\widehat{BD}$的中點(diǎn).
(2)若AC=6,AB=3,BC=4,求BG的長.

查看答案和解析>>

同步練習(xí)冊答案