【題目】某校后勤處為跟蹤調(diào)查該校餐廳的當(dāng)月的服務(wù)質(zhì)量,兌現(xiàn)獎(jiǎng)懲,從就餐的學(xué)生中隨機(jī)抽出100位學(xué)生對(duì)餐廳服務(wù)質(zhì)量打分(5分制),得到如下柱狀圖:

(1)從樣本中任意選取2名學(xué)生,求恰好有一名學(xué)生的打分不低于4分的概率;

(2)若以這100人打分的頻率作為概率,在該校隨機(jī)選取2名學(xué)生進(jìn)行打分(學(xué)生打分之間相互獨(dú)立)記表示兩人打分之和,求的分布列和.

【答案】(1) .(2)見解析

【解析】試題分析:(1)不低于4分,即4分或5分,共50人,基本事件為從100人中任選取2人,事件總數(shù),符合事件為從2分與3分50人中選 1人,4分與5分50人中選1人,事件總數(shù)。(2)X可取值為.選2分的概率,3分的概率4分的概率,5分的概率,再根據(jù)相互獨(dú)立事件同時(shí)發(fā)生概率和互斥事件的和角公式可分別求出概率。

試題解析:(1)設(shè)“從樣本中任意選取2名學(xué)生,求恰好有一名學(xué)生的打分不低于4分”為事件, .

(2) .

;

;

;

;

.

分布列如下:

4

5

6

7

8

9

10

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn),若直線與曲線交于, 兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若曲線過點(diǎn),求曲線在點(diǎn)處的切線方程;

2)求函數(shù)在區(qū)間上的最大值;

3)若函數(shù)有兩個(gè)不同的零點(diǎn), ,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知圓的參數(shù)方程為為參數(shù)),若是圓軸正半軸的交點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,設(shè)過點(diǎn)的圓的切線為.

(1)求直線的極坐標(biāo)方程;

(2)求圓上到直線的距離最大的點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司在迎新年晚會(huì)上舉行抽獎(jiǎng)活動(dòng),有甲、乙兩個(gè)抽獎(jiǎng)方案供員工選擇;

方案甲:員工最多有兩次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)的中獎(jiǎng)率為.第一次抽獎(jiǎng),若未中獎(jiǎng),則抽獎(jiǎng)結(jié)束.若中獎(jiǎng),則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎(jiǎng),規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎(jiǎng)金,不進(jìn)行第二次抽獎(jiǎng);若正面朝上,員工則須進(jìn)行第二次抽獎(jiǎng),且在第二次抽獎(jiǎng)中,若中獎(jiǎng),獲得獎(jiǎng)金1000元;若未中獎(jiǎng),則所獲獎(jiǎng)金為0元.

方案乙:員工連續(xù)三次抽獎(jiǎng),每次中獎(jiǎng)率均為,每次中獎(jiǎng)均可獲獎(jiǎng)金400元.

(1)求某員工選擇方案甲進(jìn)行抽獎(jiǎng)所獲獎(jiǎng)金(元)的分布列;

(2)某員工選擇方案乙與選擇方案甲進(jìn)行抽獎(jiǎng),試比較哪個(gè)方案更劃算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2015年12月,京津冀等地?cái)?shù)城市指數(shù)“爆表”,北方此輪污染為2015年以來最嚴(yán)重的污染過程,為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份某星期星期一到星期日某一時(shí)間段車流量與的數(shù)據(jù)如表:

時(shí)間

星期一

星期二

星期三

星期四

星期五

星期六

星期七

車流量(萬輛)

1

2

3

4

5

6

7

的濃度(微克/立方米)

28

30

35

41

49

56

62

(1)由散點(diǎn)圖知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;

的濃度;

(ii)規(guī)定:當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級(jí)為優(yōu);當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級(jí)為良,為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車流量在多少萬輛以內(nèi)?(結(jié)果以萬輛為單位,保留整數(shù))

參考公式:回歸直線的方程是,其中, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)若,求函數(shù)的極值.

(2)若有唯一的零點(diǎn),求的取值范圍.

(3)若,設(shè),求證: 內(nèi)有唯一的零點(diǎn),且對(duì)(2)中的,滿足.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】計(jì)劃在某水庫建一座至多安裝臺(tái)發(fā)電機(jī)的水電站,過去年的水文資料顯示,水庫年入流量(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上,不足的年份有年,不低于且不超過的年份有年,超過的年份有年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,假設(shè)各年的年入流量相互獨(dú)立.

(1)求未來年中,設(shè)表示流量超過的年數(shù),求的分布列及期望;

(2)水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每年發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù)受年入流量限制,并有如下關(guān)系:

年入流量

發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù)

若某臺(tái)發(fā)電機(jī)運(yùn)行,則該臺(tái)年利潤為萬元,若某臺(tái)發(fā)電機(jī)未運(yùn)行,則該臺(tái)年虧損萬元,欲使水電站年總利潤的均值達(dá)到最大,應(yīng)安裝發(fā)電機(jī)多少臺(tái)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面幾種推理過程是演繹推理的是 (  )

A. 某校高三(1)班有55人,2班有54人,3班有52人,由此得高三所有班人數(shù)超過50

B. 兩條直線平行,同旁內(nèi)角互補(bǔ),如果∠A與∠B是兩條平行直線的同旁內(nèi)角,則∠AB180°

C. 由平面三角形的性質(zhì),推測空間四邊形的性質(zhì)

D. 在數(shù)列{an}中,a11,an (an1)(n≥2),由此歸納出{an}的通項(xiàng)公

查看答案和解析>>

同步練習(xí)冊答案