如圖,已知三棱錐的則面是等邊三角形,的中點, , .

(1)證明:平面

(2)求點到平面的距離.

 

(1)證明見解析;(2)

【解析】

試題分析:(1)利用線面垂直的判斷定理證明線面垂直,條件齊全.(2)利用棱錐的體積公式求體積.(3)證明線面垂直的方法:一是線面垂直的判定定理;二是利用面面垂直的性質(zhì)定理;三是平行線法(若兩條平行線中的一條垂直于這個平面,則另一條也垂直于這個平面.解題時,注意線線、線面與面面關(guān)系的相互轉(zhuǎn)化.(4)在求三棱柱體積時,選擇適當(dāng)?shù)牡鬃鳛榈酌妫@樣體積容易計算,在求點到平面的距離時,可以通過轉(zhuǎn)化去求解.

試題解析:證明:(1)∵,是等邊三角形

,故是直角三角形,

同理可證

平面,∴平面

又∵平面,∴

又∵的中點,∴

, ∴平面

(2) ∵,

,故是直角三角形,

由(1)可知,是三棱錐的高

又∵是邊長為等邊三角形,

設(shè)點到平面的距離為,則

,即,解得

∴點到平面的距離為

考點:1、直線與平面垂直的判定;2、點到平面的距離.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆廣東省廣州市高三上學(xué)期第一次質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:填空題

,則的值是 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆廣東省東莞市高二下學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:選擇題

的展開式中的常數(shù)項為( )

A.﹣64 B.﹣32 C.32 D.64

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆廣東省東莞市高三上學(xué)期第二次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

已知滿足約束條件,則最小值為

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆廣東省東莞市高三上學(xué)期第二次月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

一空間幾何體的三視圖如圖所示,則該幾何體的體積為( )

A. B.

C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆廣東省東莞市高三上學(xué)期第二次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)的圖象經(jīng)過點

(1)求實數(shù)的值;

(2)求函數(shù)的最小正周期與單調(diào)遞增區(qū)間.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆廣東省東莞市高三上學(xué)期第二次月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

關(guān)于直線對稱的圓的方程為 ( )

A.

B.

C.

D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆廣東惠州市高三第二次調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

在等比數(shù)列中,,,則 _________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山西省忻州市高三上學(xué)期第一次四校聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

近幾年出現(xiàn)各種食品問題,食品添加劑會引起血脂增高、血壓增高、血糖增高等疾。疄榱私馊呒膊∈欠衽c性別有關(guān),醫(yī)院隨機對入院的60人進(jìn)行了問卷調(diào)查,得到了如下的列聯(lián)表:

(1)請將如圖的列聯(lián)表補充完整;若用分層抽樣的方法在患三高疾病的人群中抽人,其中女性抽多少人?

(2)為了研究三高疾病是否與性別有關(guān),

請計算出統(tǒng)計量,并說明你有多大的把握認(rèn)為三高疾病與性別有關(guān)?

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式,其中

 

患三高疾病

不患三高疾病

合計

 

6

30

 

 

 

合計

36

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案