分析 (1)設(shè)n所對角為A,n+2所對角為C,運用三角形的余弦定理,化簡可得cosA;由正弦定理和二倍角的正弦公式,化簡整理可得cosA;
(2)由(1)可得n的方程,可得$\frac{n+2}{2n}=\frac{n+5}{2(n+2)}$,解方程可得n的值.
解答 解:(1)根據(jù)大角對大邊及大邊對大角可知,設(shè)n所對角為A,n+2所對角為C,
由余弦定理得:$cosA=\frac{{{{(n+1)}^2}+{{(n+2)}^2}-{n^2}}}{2(n+1)(n+2)}=\frac{n+5}{2(n+2)}$,
由正弦定理得:$\frac{n}{sinA}=\frac{n+2}{sinC}$及C=2A得
$\frac{n}{sinA}$=$\frac{n+2}{sin2A}$=$\frac{n+2}{2sinAcosA}$,
可得$cosA=\frac{n+2}{2n}$;
(2)由(1)可得$\frac{n+2}{2n}=\frac{n+5}{2(n+2)}$得
(n+2)2=n(n+5),
解得n=4.
點評 本題考查解三角形的正弦定理和余弦定理的運用,同時考查二倍角的正弦公式和運算求解能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{4}{3}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com