【題目】為打贏打好脫貧攻堅(jiān)戰(zhàn),實(shí)現(xiàn)建檔立卡貧困人員穩(wěn)定增收,某地區(qū)把特色養(yǎng)殖確定為脫貧特色主導(dǎo)產(chǎn)業(yè),助力鄉(xiāng)村振興.現(xiàn)計(jì)劃建造一個(gè)室內(nèi)面積為平方米的矩形溫室大棚,并在溫室大棚內(nèi)建兩個(gè)大小、形狀完全相同的矩形養(yǎng)殖池,其中沿溫室大棚前、后、左、右內(nèi)墻各保留米寬的通道,兩養(yǎng)殖池之間保留2米寬的通道.設(shè)溫室的一邊長(zhǎng)度為米,如圖所示.

1)將兩個(gè)養(yǎng)殖池的總面積表示為的函數(shù),并寫出定義域;

2)當(dāng)溫室的邊長(zhǎng)取何值時(shí),總面積最大?最大值是多少?

【答案】1,定義域?yàn)?/span>;(2)當(dāng)溫室的邊長(zhǎng)30米時(shí),總面積取最大值為1215平方米.

【解析】

1)依題意得溫室的另一邊長(zhǎng)為米.求出養(yǎng)殖池的總面積,然后求解函數(shù)的定義域即可.(2,利用基本不等式求解函數(shù)的最值即可.

1)依題意得溫室的另一邊長(zhǎng)為米.

因此養(yǎng)殖池的總面積,

因?yàn)?/span>,所以

所以定義域?yàn)?/span>

2

當(dāng)且僅當(dāng),即時(shí)上式等號(hào)成立,

當(dāng)溫室的邊長(zhǎng)30米時(shí),總面積取最大值為1215平方米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

1)若關(guān)于的不等式上恒成立,求的取值范圍;

2)設(shè)函數(shù),上存在極值,求的取值范圍,并判斷極值的正負(fù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在橢圓上,動(dòng)點(diǎn)都在橢圓上,且直線不經(jīng)過原點(diǎn),直線經(jīng)過弦的中點(diǎn).

(1)求橢圓的方程和直線的斜率;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. “f(0)”是“函數(shù)f(x)是奇函數(shù)”的充要條件

B. p:,則

C. “若,則”的否命題是“若,則

D. 為假命題,則p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左焦點(diǎn)為,離心率為,為圓的圓心.

(1)求橢圓的方程;

(2)已知過橢圓右焦點(diǎn)的直線交橢圓于兩點(diǎn),過且與垂直的直線與圓交于兩點(diǎn),求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為等差數(shù)列,且其前8項(xiàng)和為52 是各項(xiàng)均為正數(shù)的等比數(shù)列,且滿足, .

1)求數(shù)列的通項(xiàng)公式;

(2)令,數(shù)列的前項(xiàng)和為若對(duì)任意正整數(shù),都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)當(dāng)為自然對(duì)數(shù)的底數(shù))時(shí),求的最小值;

(2)討論函數(shù)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,求的單調(diào)區(qū)間;

2)若在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:的左右焦點(diǎn)分別為,,左頂點(diǎn)為,點(diǎn)在橢圓上,且的面積為.

(1)求橢圓的方程;

(2)過原點(diǎn)且與軸不重合的直線交橢圓,兩點(diǎn),直線分別與軸交于點(diǎn),,.求證:以為直徑的圓恒過交點(diǎn),并求出面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案