(2011•臨沂二模)若函數(shù)y=f(x)是函數(shù)y=logax(x>0,且a≠1)的反函數(shù),且f(1)=
1
2
,則f(x)=( 。
分析:先根據(jù)f(-1)=
1
2
則f-1
1
2
)=-1求出a的值,然后求出函數(shù)y=logax(a>0,a≠1)的反函數(shù)即為所求.
解答:解:∵函數(shù)y=f(x)是函數(shù)y=logax(a>0,a≠1)的反函數(shù),
∴f-1(x)=logax
而f(1)=
1
2
則f-1
1
2
)=loga
1
2
=1
∴a=
1
2
即f-1(x)=log 
1
2
x
f-1(x)=log 
1
2
x的反函數(shù)為f(x)=(
1
2
)x

故選A.
點(diǎn)評:本小題主要考查反函數(shù)的應(yīng)用、反函數(shù)等基礎(chǔ)知識,考查轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•臨沂二模)已知x>0,由不等式x+
1
x
≥2
x•
1
x
=2,x+
4
x2
=
x
2
+
x
2
+
4
x2
≥3
3
x
2
x
2
4
x2
=3,…,可以推出結(jié)論:x+
a
xn
≥n+1(n∈N*),則a=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•臨沂二模)設(shè)x,y滿足約束條件
4x-y≥0
x≤1
y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為8,則ab的最大值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•臨沂二模)對于函數(shù)f(x)=
3
sinx+cosx,下列命題中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•臨沂二模)如圖,過圓x2+y2=4與x軸的兩個(gè)交點(diǎn)A、B作圓的切線AC、BD,再過圓上任意一點(diǎn)H作圓的切線,交AC、BD與C、D兩點(diǎn),設(shè)AD、BC的交點(diǎn)為R.
(I)求動(dòng)點(diǎn)R的軌跡E的方程;
(II)設(shè)E的上頂點(diǎn)為M,直線l交曲線E于P、Q兩點(diǎn),問:是否存在這樣的直線l,使點(diǎn)G(1,0)恰為△PQM的垂心?若存在,求出直線l的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•臨沂二模)如圖是某建筑物的三視圖,現(xiàn)需將其外部用油漆刷一遍,若每平方米用漆0.1千克,則共需油漆大約為(  )(尺寸如圖,單位:米,π取3)

查看答案和解析>>

同步練習(xí)冊答案