20.已知函數(shù)f(x)=lnx-ax2,且函數(shù)f(x)在點(diǎn)(2,f(2))處的切線的斜率是$-\frac{3}{2}$,則a=$\frac{1}{2}$.

分析 求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義建立方程關(guān)系進(jìn)行求解即可.

解答 解:∵f(x)在點(diǎn)(2,f(2))處的切線的斜率是$-\frac{3}{2}$,
∴$f'(2)=-\frac{3}{2}$,又$f'(x)=\frac{1}{x}-2ax$,
∴$-\frac{3}{2}=\frac{1}{2}-2a×2$,得$a=\frac{1}{2}$.
故答案為:$\frac{1}{2}$

點(diǎn)評(píng) 本題主要考查導(dǎo)數(shù)的應(yīng)用,求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義建立方程關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知|$\overrightarrow{a}$|=2與|$\overrightarrow$|=4,在下列條件下求$\overrightarrow{a}$•$\overrightarrow$:
(1)$\overrightarrow{a}$∥$\overrightarrow$;
(2)$\overrightarrow{a}$⊥$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.判斷下列各式的符號(hào):
(1)sinθ•cosθ($\frac{π}{2}$<θ<π);
(2)$\frac{sinθ}{cosθ}$(2π<θ<$\frac{5π}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=|x-3|.
(Ⅰ)若不等式f(x-1)+f(x)<a的解集為空集,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若|a|<1,|b|<3,且a≠0,判斷$\frac{f(ab)}{|a|}$與$f(\frac{a})$的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知正方體的不在同一表面的兩個(gè)頂點(diǎn)A(-1,2,-1),B(3,-2,3),則正方體的棱長(zhǎng)等于( 。
A.4B.2C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.A,B兩組各有7位病人,他們服用某種藥物后的康復(fù)時(shí)間(單位:天)記錄如下:
A組:10,11,12,13,14,15,16,;
B組:12,13,15,16,17,14,a.
假設(shè)所有病人的康復(fù)時(shí)間相互獨(dú)立,從A,B兩組隨機(jī)各選1人,A組選出的人記為甲,B組選出的人記為乙.
(1)如果a=11,求B組的7位病人康復(fù)時(shí)間的平均數(shù)和方差;
(2)如果a=14,設(shè)甲與乙的康復(fù)時(shí)間都低于15,記甲的康復(fù)時(shí)間與乙的康復(fù)時(shí)間的差的絕對(duì)值X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知曲線x2+y2=2(x≥0,y≥0)和x+y=$\sqrt{2}$圍成的封閉圖形為Г,則圖形Г繞y軸旋轉(zhuǎn)一周后所形成幾何體的表面積為( 。
A.$\frac{2\sqrt{2}}{3}$B.(8+4$\sqrt{2}$)πC.(8+2$\sqrt{2}$)πD.(4+2$\sqrt{2}$)π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.橢圓E中心在原點(diǎn),以拋物線y2=4x的焦點(diǎn)為其一個(gè)焦點(diǎn),且E經(jīng)點(diǎn)P($\frac{4}{3}$,$\frac{1}{3}$),則橢圓短軸長(zhǎng)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{^{2}}$=1(0<b<3)的左右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),過點(diǎn)F1且不與x軸重合的直線l與橢圓相交于A,B兩點(diǎn).當(dāng)直線l垂直x軸時(shí),|AB|=$\frac{8}{3}$.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求△ABF2內(nèi)切圓半徑的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案