【題目】已知直線經(jīng)過橢圓)的左頂點(diǎn)

上頂點(diǎn).橢圓的右頂點(diǎn)為,點(diǎn)是橢圓上位于軸上方的動點(diǎn),直線、與直線

分別交于、兩點(diǎn).

)求橢圓的標(biāo)準(zhǔn)方程;

)求線段長度的最小值;

)當(dāng)線段的長度最小時(shí),橢圓上是否存在這樣的點(diǎn),使得的面積為?若存在,確定點(diǎn)的個(gè)數(shù);若不存在,請說明理由.

【答案】)橢圓上存在兩個(gè)點(diǎn),使得的面積為

【解析】

)令,所以,所以,令,所以,所以

,所以橢圓的標(biāo)準(zhǔn)方程為

)顯然直線的斜率存在且為正數(shù),設(shè)直線的方程為),聯(lián)立得

,解得,由,

顯然,由求根公式得(舍),所以,從而直線的方程為,聯(lián)立得,解得,所以,當(dāng)且僅當(dāng)時(shí)取,因此,線段長度的最小值為

)由()知,時(shí)線段的長度最小,此時(shí),,因?yàn)?/span>的面積為,所以點(diǎn)到直線的距離為,因?yàn)橹本的方程為,設(shè)過點(diǎn)且與直線平行的直線的方程為,由兩平行線之間距離為,解得,當(dāng)時(shí),直線的方程為,聯(lián)立得,消去,顯然判別式,故點(diǎn)個(gè);當(dāng)時(shí),直線

的方程為,聯(lián)立得,消去,顯然判別式,故

點(diǎn)不存在.所以,橢圓上存在兩個(gè)點(diǎn),使得的面積為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進(jìn)行自主創(chuàng)業(yè),經(jīng)過市場調(diào)查,生產(chǎn)一小型電子產(chǎn)品需投入固定成本2萬元,每生產(chǎn)x萬件,需另投入流動成本C(x)萬元,當(dāng)年產(chǎn)量小于7萬件時(shí),C(x)=x2+2x(萬元);當(dāng)年產(chǎn)量不小于7萬件時(shí),C(x)=6x+1nx+﹣17(萬元).已知每件產(chǎn)品售價(jià)為6元,假若該同學(xué)生產(chǎn)的產(chǎn)M當(dāng)年全部售完.

(1)寫出年利潤P(x)(萬元)關(guān)于年產(chǎn)量x(萬件)的函數(shù)解析式;(注:年利潤=年銷售收人﹣固定成本﹣流動成本

(2)當(dāng)年產(chǎn)量約為多少萬件時(shí),該同學(xué)的這一產(chǎn)品所獲年利潤最大?最大年利潤是多少?(取e3≈20)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)討論的單調(diào)性;

2)若有兩個(gè)極值點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將邊長為的正方形沿對角線折疊,使得平面平面,平面,的中點(diǎn),且

(1)求證:;

(2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】張軍自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家干果店,銷售的干果中有松子、開心果、腰果、核桃,價(jià)格依次為120/千克、80/千克、70/千克、40元千克,為增加銷量,張軍對這四種干果進(jìn)行促銷:一次購買干果的總價(jià)達(dá)到150元,顧客就少付x(2xZ).每筆訂單顧客網(wǎng)上支付成功后,張軍會得到支付款的80%.

①若顧客一次購買松子和腰果各1千克,需要支付180元,則x=________;

②在促銷活動中,為保證張軍每筆訂單得到的金額均不低于促銷前總價(jià)的七折,則x的最大值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域?yàn)?/span>的函數(shù)圖像的兩個(gè)端點(diǎn)為、,向量,圖像上任意一點(diǎn),其中,若不等式恒成立,則稱函數(shù)上滿足“范圍線性近似”,其中最小正實(shí)數(shù)稱為該函數(shù)的線性近似閾值.若函數(shù)定義在上,則該函數(shù)的線性近似閾值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知某公園的四處景觀分別位于等腰梯形的四個(gè)頂點(diǎn)處,其中,兩地的距離為千米,,兩地的距離為千米,.現(xiàn)擬規(guī)劃在(不包括端點(diǎn))路段上增加一個(gè)景觀,并建造觀光路直接通往處,造價(jià)為每千米萬元,又重新裝飾路段,造價(jià)為每千米萬元.

(1)若擬修建觀光路路段長為千米,求路段的造價(jià);

(2)設(shè),當(dāng)為何值時(shí),段的總造價(jià)最低.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若關(guān)于x的方程僅有1個(gè)實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;

2)若是函數(shù)的極大值點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)小組到進(jìn)行社會實(shí)踐調(diào)查,了解鑫鑫桶裝水經(jīng)營部在為如何定價(jià)發(fā)愁。進(jìn)一步調(diào)研了解到如下信息:該經(jīng)營部每天的房租、人員工資等固定成本為200元,每桶水的進(jìn)價(jià)是5元,銷售單價(jià)與日均銷售量的關(guān)系如下表:

銷售單價(jià)/元

6

7

8

9

10

11

12

日均銷售量/桶

480

440

400

360

320

280

240

根據(jù)以上信息,你認(rèn)為該經(jīng)營部定價(jià)為多少才能獲得最大利潤?( )

A.每桶8.5B.每桶9.5C.每桶10.5D.每桶11.5

查看答案和解析>>

同步練習(xí)冊答案