【題目】【2017南通一模(本題滿分16分)如圖,某機(jī)械廠要將長(zhǎng)6m,寬2m的長(zhǎng)方形鐵皮ABCD進(jìn)行裁剪。已知點(diǎn)F為AD的中點(diǎn),點(diǎn)E在邊BC上,裁剪時(shí)先將四邊形CDFE沿直線EF翻折到MNFE處(點(diǎn)C,D分別落在直線BC下方點(diǎn)M,N處,F(xiàn)N交邊BC于點(diǎn)P),再沿直線PE裁剪。

(1)當(dāng)時(shí),試判斷四邊形MNPE的形狀,并求其面積;

(2)若使裁剪得到的四邊形MNPE面積最大,請(qǐng)給出裁剪方案,并說明理由。

【答案】見解析

【解析】(1)當(dāng)時(shí),,

所以,即,所以四邊形MNPE為矩形,………………3分

所以四邊形MNPE的面積為…………………………5分

(2)設(shè),由條件知:,

,,……8分

得:,所以解得:,

所以四邊形MNPE的面積為

………………………………………………………………12分

當(dāng)且僅當(dāng),即,時(shí)取=”……14分

答:當(dāng)時(shí),沿直線PE裁剪,四邊形MNPE面積最大,為。16分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017北京豐臺(tái)5月綜合測(cè)試】已知函數(shù).

當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

證明:對(duì)于,在區(qū)間上有極小值,且極小值大于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年第二次全國(guó)大聯(lián)考江蘇卷】若無窮數(shù)列滿足:恒等于常數(shù),則稱具有局部等差數(shù)列.

1)若具有局部等差數(shù)列,且,求

2)若無窮數(shù)列是等差數(shù)列,無窮數(shù)列是公比為正數(shù)的等比數(shù)列,,,,判斷是否具有局部等差數(shù)列,并說明理由;

3)設(shè)既具有局部等差數(shù)列,又具有局部等差數(shù)列,求證具有局部等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2016-2017學(xué)年度蘇錫常鎮(zhèn)四市高三教學(xué)情況調(diào)研(二)】某科研小組研究發(fā)現(xiàn):一棵水蜜桃樹的產(chǎn)量(單位:百千克)與肥料費(fèi)用(單位:百元)滿足如下關(guān)系:,且投入的肥料費(fèi)用不超過5百元.此外,還需要投入其他成本(如施肥的人工費(fèi)等)百元.已知這種水蜜桃的市場(chǎng)售價(jià)為16元/千克(即16百元/百千克),且市場(chǎng)需求始終供不應(yīng)求.記該棵水蜜桃樹獲得的利潤(rùn)為(單位:百元).

(1)求利潤(rùn)函數(shù)的函數(shù)關(guān)系式,并寫出定義域;

(2)當(dāng)投入的肥料費(fèi)用為多少時(shí),該水蜜桃樹獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄AC過點(diǎn)(1,0),且于直線x=﹣1相切.
(1)求圓心C的軌跡M的方程;
(2)A,B是M上的動(dòng)點(diǎn),O是坐標(biāo)原點(diǎn),且 , 求證:直線AB過定點(diǎn),并求出該點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,(5a﹣4c)cosB﹣4bcosC=0.
(1)求cosB的值;
(2)若c=5,b= ,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017寧夏石嘴山市二模】如圖,在以為頂點(diǎn)的多面體中,平面,平面,,.

(1)請(qǐng)?jiān)趫D中作出平面,使得,,并說明理由;

(2)求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某大學(xué)一年級(jí)女生中,選取身高分別是150cm、155cm、160cm、165cm、170cm的學(xué)生各一名,其身高和體重?cái)?shù)據(jù)如表所示:

身高/cm(x)

150

155

160

165

170

體重/kg(y)

43

46

49

51

56


(1)求y關(guān)于x的線性回歸方程;
(2)利用(1)中的回歸方程,計(jì)算身高為168cm時(shí),體重的估計(jì)值 為多少?
參考公式:線性回歸方程 = x+ ,其中 = = , =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正三棱錐P﹣ABC底面邊長(zhǎng)為6,底邊BC在平面α內(nèi),繞BC旋轉(zhuǎn)該三棱錐,若某個(gè)時(shí)刻它在平面α上的正投影是等腰直角三角形,則此三棱錐高的取值范圍是(

A.(0, ]
B.(0, ]∪[ ,3]
C.(0, ]
D.(0, ]∪[3, ]

查看答案和解析>>

同步練習(xí)冊(cè)答案