【題目】已知正三棱錐P﹣ABC底面邊長(zhǎng)為6,底邊BC在平面α內(nèi),繞BC旋轉(zhuǎn)該三棱錐,若某個(gè)時(shí)刻它在平面α上的正投影是等腰直角三角形,則此三棱錐高的取值范圍是( )
A.(0, ]
B.(0, ]∪[ ,3]
C.(0, ]
D.(0, ]∪[3, ]
【答案】B
【解析】解:設(shè)正三棱錐P﹣ABC的高為h,
在△ABC中,設(shè)其中心為O,BC中點(diǎn)為E,則OE= × ,
當(dāng)h= 時(shí),PE= ,PB= = ,△PBC為等腰直角三角形,即當(dāng)△PBC在平面α內(nèi)時(shí)符合,
P不在平面α內(nèi)時(shí),設(shè)p在α內(nèi)的投影為P',PP'=d,∵△P'BC為等腰直角三角形,故P'E=3PE= >3,
又PE= = >3,
∴h2>6,∴h> .
由選項(xiàng)可知B符合,
故選:B.
【考點(diǎn)精析】關(guān)于本題考查的棱錐的結(jié)構(gòu)特征,需要了解側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017南通一模】(本題滿分16分)如圖,某機(jī)械廠要將長(zhǎng)6m,寬2m的長(zhǎng)方形鐵皮ABCD進(jìn)行裁剪。已知點(diǎn)F為AD的中點(diǎn),點(diǎn)E在邊BC上,裁剪時(shí)先將四邊形CDFE沿直線EF翻折到MNFE處(點(diǎn)C,D分別落在直線BC下方點(diǎn)M,N處,F(xiàn)N交邊BC于點(diǎn)P),再沿直線PE裁剪。
(1)當(dāng)時(shí),試判斷四邊形MNPE的形狀,并求其面積;
(2)若使裁剪得到的四邊形MNPE面積最大,請(qǐng)給出裁剪方案,并說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 【2017江西4月質(zhì)檢】如圖,四棱錐中,側(cè)面底面, , , , , ,點(diǎn)在棱上,且,點(diǎn)在棱上,且平面.
(1)求證: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,若過(guò)點(diǎn)F且斜率為1的直線與拋物線相交于M,N兩點(diǎn),且|MN|=8.
(1)求拋物線C的方程;
(2)設(shè)直線l為拋物線C的切線,且l∥MN,P為l上一點(diǎn),求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了得到函數(shù)y=cos( x+ )的圖象,只要把y=cos x的圖象上所有的點(diǎn)( )
A.向左平移 個(gè)單位長(zhǎng)度
B.向右平移 個(gè)單位長(zhǎng)度
C.向左平移 個(gè)單位長(zhǎng)度
D.向右平移 個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為.
(1)若a=1,求C與l的交點(diǎn)坐標(biāo);
(2)若C上的點(diǎn)到l的距離的最大值為,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4—5:不等式選講]
已知函數(shù)f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│.
(1)當(dāng)a=1時(shí),求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)口袋有m個(gè)白球,n個(gè)黑球(m,n ,n 2),這些球除顏色外全部相同,F(xiàn)將口袋中的球隨機(jī)的逐個(gè)取出,并放入如圖所示的編號(hào)為1,2,3,……,m+n的抽屜內(nèi),其中第k次取球放入編號(hào)為k的抽屜(k=1,2,3,……,m+n).
(1)試求編號(hào)為2的抽屜內(nèi)放的是黑球的概率p;
(2)隨機(jī)變量x表示最后一個(gè)取出的黑球所在抽屜編號(hào)的倒數(shù),E(x)是x的數(shù)學(xué)期望,證明
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,tanA是以﹣4為第三項(xiàng),4為第七項(xiàng)的等差數(shù)列的公差,tanB是以 為第三項(xiàng),9為第六項(xiàng)的等比數(shù)列公比,則這個(gè)三角形是( )
A.鈍角三角形
B.銳角三角形
C.等腰直角三角形
D.以上都不對(duì)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com