△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,若
(I)求角A的大小;
(II)若f(x)=2cos2(x+A)+cos(2x-2A),求y=f(x)的最小正周期與單調(diào)遞增區(qū)間.
【答案】分析:(I)由 ,得 ,即a2=b2+c2-bc,由余弦定理,得 ,可得A的值.
(II)利用二倍角公式化簡f(x)的解析式為1-cos2x,從而求出周期,求出cos2x的單調(diào)減區(qū)間,即為函數(shù)f(x)的單調(diào)遞增區(qū)間.
解答:解::(I)由 ,得 ,即a2=b2+c2-bc,由余弦定理,得 ,
又角A是△ABC的一個內(nèi)角,∴
(II)∵f(x)=2cos2(x+A)+cos(2x-2A)=1+cos(2x+2A)+cos(2x-2A)=1-cos2x,
故函數(shù)的最小正周期為 =π.
由2kπ≤2x≤2kπ+π,k∈z,可得 kπ≤x≤kπ+,k∈z,故單調(diào)增區(qū)間為[kπ,kπ+],k∈z.
點評:本題考查正弦定理、余弦定理的應(yīng)用,余弦函數(shù)的單調(diào)性,求出角A的值,是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺區(qū)一模)在△ABC中,角A,B,C所對的邊分別為a,b,c,且asinB-bcosC=ccosB.
(Ⅰ)判斷△ABC的形狀;
(Ⅱ)若f(x)=
1
2
cos2x-
2
3
cosx+
1
2
,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•德州一模)已知函數(shù)f(x)=
3
sinxcosx-cos2x+
1
2
(x∈R)

(I)求函數(shù)f(x)的最小正周期及在區(qū)間[0,
12
]
上的值域;
(Ⅱ)在△ABC中,角A、B、C所對的邊分別是a、b、c,又f(
A
2
+
π
3
)=
4
5
,b=2
,面積S△ABC=3,求邊長a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•盧灣區(qū)一模)在△ABC中,角A,B,C的對邊分別為a,b,c,且a=2bcosC,b+c=3a.求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•石景山區(qū)一模)在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大;
(Ⅱ)若A=
π4
,a=2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,角A、B、C所對的邊長分別為a、b、c,向量
m
=(1,cosB),
n
=(sinB,-
3
)
,且
m
n

(1)求角B的大。
(2)若△ABC面積為
3
3
2
,3ac=25-b2,求a,c的值.

查看答案和解析>>

同步練習(xí)冊答案