【題目】如圖,在三棱柱中,、分別是、的中點.
(1)設棱的中點為,證明:平面;
(2)若,,,且平面平面,求三棱柱的高.
【答案】(1)證明見解析;(2).
【解析】
(1)連接,證明出平面平面,然后利用平面與平面平行的性質(zhì)可得出平面;
(2)將三棱柱的高轉(zhuǎn)化成三棱錐的高來計算,過點作交于點,可得出平面,計算出的長度,然后利用等體積法由計算出三棱錐的高.
(1)連接,在三棱柱中,,
是的中點,是的中點,,四邊形是平行四邊形,
,平面,平面,平面.
、分別是、的中點,,
又平面,平面,平面,
,、平面,平面平面.
平面,平面;
(2)三棱柱的高轉(zhuǎn)化成三棱錐的高,設為,
過點作交于點,
因為平面平面,平面平面,
又因為,平面,所以平面,
在中,,.
又因為,.
所以,所以,解得.
因此,三棱柱的高為.
科目:高中數(shù)學 來源: 題型:
【題目】設有兩個命題:(1)不等式|x|+|x-1|>m的解集為R;(2)函數(shù)f(x)=(7-3m)x在R上是增函數(shù);如果這兩個命題中有且只有一個是真命題,則m的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓的圓心為,且直線與圓相切,設直線的方程為,若點在直線上,過點作圓的切線,切點為.
(1)求圓的標準方程;
(2)若,試求點的坐標;
(3)若點的坐標為,過點作直線與圓交于兩點,當時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為,( 為參數(shù)),為曲線上的動點,動點滿足(且),點的軌跡為曲線.
(1)求曲線的方程,并說明是什么曲線;
(2)在以坐標原點為極點,以軸的正半軸為極軸的極坐標系中, 點的極坐標為,射線與的異于極點的交點為,已知面積的最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若函數(shù)在上有且只有一個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個不透明的盒子中關有蝴蝶、蜜蜂和蜻蜓三種昆蟲共11只,現(xiàn)在盒子上開一小孔,每次只能飛出1只昆蟲(假設任意1只昆蟲等可能地飛出).若有2只昆蟲先后任意飛出(不考慮順序),則飛出的是蝴蝶或蜻蜓的概率是.
(1)求盒子中蜜蜂有幾只;
(2)若從盒子中先后任意飛出3只昆蟲(不考慮順序),記飛出蜜蜂的只數(shù)為X,求隨機變量X的分布列與數(shù)學期望E(X).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量,向量,設函數(shù)的圖象關于直線對稱,其中常數(shù).
(1)若,求的值域;
(2)將函數(shù)的圖象向左平移個單位,再向下平移1個單位,得到函數(shù)的圖象,用五點法作出函數(shù)在區(qū)間上的圖象.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學餐飲中心為了了解新生的飲食習慣,在全校一年級學生中進行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:
喜歡甜品 | 不喜歡甜品 | 合計 | |
南方學生 | 60 | 20 | 80 |
北方學生 | 10 | 10 | 20 |
合計 | 70 | 30 | 100 |
根據(jù)表中數(shù)據(jù),問是否有的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”;
已知在被調(diào)查的北方學生中有5名數(shù)學系的學生,其中2名喜歡甜品,現(xiàn)在從這5名學生中隨機抽取3人,求至多有1人喜歡甜品的概率.
附:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com