【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),證明:對(duì)任意的.

【答案】(1)見解析(2)見解析

【解析】試題分析:(Ⅰ)求出導(dǎo)函數(shù),對(duì)參數(shù)a進(jìn)行分類討論,得出導(dǎo)函數(shù)的正負(fù),判斷原函數(shù)的單調(diào)性;(Ⅱ)整理不等式得ex-lnx-2>0,構(gòu)造函數(shù)h(x)=ex-lnx-2,則可知函數(shù)h'(x)在(0,+∞)單調(diào)遞增, 所以方程h'(x)=0在(0,+∞)上存在唯一實(shí)根x0,即得出函數(shù)的最小值為h(x)minh(x0)ex0lnx02exlnx20在(0+∞)上恒成立,即原不等式成立.

試題解析:

解:(Ⅰ)由題意知,函數(shù)fx)的定義域?yàn)椋?,+∞),

由已知得

當(dāng)a≤0時(shí),f'(x)>0,函數(shù)fx)在(0,+∞)上單調(diào)遞增,

所以函數(shù)fx)的單調(diào)遞增區(qū)間為(0,+∞).

當(dāng)a>0時(shí),由f'x)>0,得,由f'x)<0,得,

所以函數(shù)fx)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

綜上,當(dāng)a≤0時(shí),函數(shù)fx)的單調(diào)遞增區(qū)間為(0,+∞);

當(dāng)a>0時(shí),函數(shù)fx)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

(Ⅱ)證明:當(dāng)a=1時(shí),不等式fx)+exx2+x+2可變?yōu)?/span>ex﹣lnx﹣2>0,令hx)=ex﹣lnx﹣2,則,可知函數(shù)h'(x)在(0,+∞)單調(diào)遞增,

而,

所以方程h'(x)=0在(0,+∞)上存在唯一實(shí)根x0,即

當(dāng)x∈(0,x0)時(shí),h'(x)<0,函數(shù)hx)單調(diào)遞減;

當(dāng)x∈(x0,+∞)時(shí),h'(x)>0,函數(shù)hx)單調(diào)遞增; 所以

ex﹣lnx﹣2>0在(0,+∞)上恒成立,

所以對(duì)任意x>0,f(x)+exx2+x+2成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的兩個(gè)頂點(diǎn)分別為A(2,0),B(2,0),焦點(diǎn)在x軸上,離心率為

(Ⅰ)求橢圓C的方程;

(Ⅱ)點(diǎn)Dx軸上一點(diǎn),過Dx軸的垂線交橢圓C于不同的兩點(diǎn)MN,過DAM的垂線交BN于點(diǎn)E.求證:△BDE與△BDN的面積之比為4:5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=kax﹣ax(a>0且a≠1)在(﹣∞,+∞)上既是奇函數(shù)又是增函數(shù),則函數(shù)g(x)=loga(x+k)的圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某書店共有韓寒的圖書6種,其中價(jià)格為25元的有2種,18元的有3種,16元的有1種.書店若把這6種韓寒的圖書打包出售,據(jù)統(tǒng)計(jì)每套的售價(jià)與每天的銷售數(shù)量如下表所示:

售價(jià)x/元

105

108

110

112

銷售數(shù)量y/套

40

30

25

15

(1)根據(jù)上表,利用最小二乘法得到回歸直線方程,求

(2)若售價(jià)為100元,則每天銷售的套數(shù)約為多少(結(jié)果保留到整數(shù))?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表.

優(yōu)秀

非優(yōu)秀

總計(jì)

甲班

10

乙班

30

合計(jì)

105

已知在全部105人中隨機(jī)抽取一人為優(yōu)秀的概率為.

(1)請(qǐng)完成上面的列聯(lián)表

(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按97.5%的可靠性要求,能否認(rèn)為成績(jī)與班級(jí)有關(guān)系;

(3)若按下面的方法從甲班優(yōu)秀的學(xué)生抽取一人:把甲班優(yōu)秀的10名學(xué)生從211進(jìn)行編號(hào),先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號(hào).試求抽到1011號(hào)的概率.

參考公式和數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求曲線在點(diǎn)()處的切線方程;

(2)證明:當(dāng)時(shí),。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R上的函數(shù),它的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,當(dāng)x≤1時(shí),f(x)=2xex(e為自然對(duì)數(shù)的底數(shù)),則f(2+3ln2)的值為(
A.48ln2
B.40ln2
C.32ln2
D.24ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解籃球愛好者小張的投籃命中率與打籃球時(shí)間之間的關(guān)系,下表記錄了小張某月1號(hào)到5號(hào)每天打籃球時(shí)間(單位:小時(shí))與當(dāng)天投籃命中率之間的關(guān)系:

時(shí)間

1

2

3

4

5

命中率

0.4

0.5

0.6

0.6

0.4


(1)求小張這天的平均投籃命中率;

(2)利用所給數(shù)據(jù)求小張每天打籃球時(shí)間(單位:小時(shí))與當(dāng)天投籃命中率之間的線性回歸方程;(參考公式:

(3)用線性回歸分析的方法,預(yù)測(cè)小李該月號(hào)打小時(shí)籃球的投籃命中率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C在以AB為直徑的圓O上,PA垂直于圓O所在的平面,G為△AOC的重心.
(1)求證:平面OPG⊥平面PAC;
(2)若PA=AB=2AC=2,求二面角A﹣OP﹣G的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案