7.某人打算制定一個長期儲蓄計劃,每年年初存款2萬元,連續(xù)儲蓄12年.由于資金原因,從第7年年初開始,變更為每年年初存款1萬元.若存款利率為每年2%,且上一年年末的本息和共同作為下一年年初的本金,則第13年年初的本息和約為20.9萬元(結(jié)果精確到0.1).(參考數(shù)據(jù):1.026≈1.13,1.0212≈1.27)

分析 確定每年的本息和,利用等比數(shù)列的求和公式,即可得到結(jié)論.

解答 解:由題意,第13年年初的本息和為2(1.0212+1.0211+…+1.027)+(1.026+1.025+…+1.02)
=2×$\frac{1.0{2}^{7}(1-1.0{2}^{6})}{1-1.02}$+$\frac{1.02×(1-1.0{2}^{6})}{1-1.02}$≈20.9.
故答案為20.9.

點評 本題考查學(xué)生的閱讀分析能力,數(shù)列模型的建立能力,屬于基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在長方體ABCD-A1B1C1D1中,底面ABCD的邊長為a的正方形,E是CC1的中點,若該長方體的外接球的表面積為10πa2,則異面直線AE與C1D1所成的角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.表面積為3π的圓錐的側(cè)面展開圖是一個半圓,則該圓錐的底面圓半徑為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點為A,P($\frac{4\sqrt{2}}{3}$,$\frac{3}$)是橢圓C上的一點,以AP為直徑的圓經(jīng)過橢圓C的右焦點F2
(1)求橢圓C的方程;
(2)設(shè)F1為橢圓C的左焦點,過右焦點F2的直線l與橢圓C交于不同兩點M、N,記△F1MN的內(nèi)切圓的面積為S,求當S取最大值時直線l的方程,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若實數(shù)x,y滿足$\left\{\begin{array}{l}x+y≤2\\ 2x+y≥0\\ 3x-y-2≤0\end{array}\right.$,則$\frac{y}{1-x}$的取值范圍為( 。
A.$({-∞,-\frac{4}{3}}]$B.$({-∞,\frac{3}{4}})$C.$[{-\frac{3}{4},+∞})$D.$[{-\frac{4}{3},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若點P(a,b)在函數(shù)y=-x2+3lnx的圖象上,點Q(c,d)在函數(shù)y=x+2的圖象上,則|PQ|的最小值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{|x-2y+2|≤2}\\{|x+3y-8|≤2}\end{array}\right.$,則z=x+2y的最大值為(  )
A.4B.8C.$\frac{24}{5}$D.$\frac{36}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖所示的程序框圖中,輸出的S的值為$\frac{11}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知數(shù)列{an}的通項公式為an=$\frac{1}{n(n+2)}$,前n項和為Sn,若實數(shù)λ滿足(-1)nλ<3+(-1)n+1Sn對任意正整數(shù)n恒成立,則實數(shù)λ的取值范圍是( 。
A.$-\frac{10}{3}$<λ≤$\frac{9}{4}$B.$-\frac{10}{3}$<λ<$\frac{9}{4}$C.$-\frac{9}{4}$<λ≤$\frac{10}{3}$D.$-\frac{9}{4}$<λ<$\frac{10}{3}$

查看答案和解析>>

同步練習冊答案