16.如圖所示的程序框圖中,輸出的S的值為$\frac{11}{12}$.

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加并輸出S=$\frac{1}{2}+\frac{1}{4}$+$\frac{1}{6}$的值.

解答 解:分析程序中各變量、各語句的作用,
再根據(jù)流程圖所示的順序,可知:
該程序的作用是累加并輸出S=$\frac{1}{2}+\frac{1}{4}$+$\frac{1}{6}$的值,
由于$\frac{1}{2}+\frac{1}{4}$+$\frac{1}{6}$=$\frac{11}{12}$.
故答案為:$\frac{11}{12}$.

點評 根據(jù)流程圖(或偽代碼)寫程序的運行結(jié)果,是算法這一模塊最重要的題型,其處理方法是:①分析流程圖(或偽代碼),從流程圖(或偽代碼)中既要分析出計算的類型,又要分析出參與計算的數(shù)據(jù)(如果參與運算的數(shù)據(jù)比較多,也可使用表格對數(shù)據(jù)進(jìn)行分析管理)⇒②建立數(shù)學(xué)模型,根據(jù)第一步分析的結(jié)果,選擇恰當(dāng)?shù)臄?shù)學(xué)模型③解模.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=ax-1(a>0,且a≠1)滿足f(1)>1,若函數(shù)g(x)=f(x+1)-4的圖象不過第二象限,則a的取值范圍是( 。
A.(2,+∞)B.(2,5]C.(1,2)D.(1,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某人打算制定一個長期儲蓄計劃,每年年初存款2萬元,連續(xù)儲蓄12年.由于資金原因,從第7年年初開始,變更為每年年初存款1萬元.若存款利率為每年2%,且上一年年末的本息和共同作為下一年年初的本金,則第13年年初的本息和約為20.9萬元(結(jié)果精確到0.1).(參考數(shù)據(jù):1.026≈1.13,1.0212≈1.27)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.某幾何體上的三視圖如圖所示,則該幾何體的體積是$\frac{4+π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,某船在海上航行中遇險發(fā)出呼救信號,我海上救生艇在A處獲悉后,立即測出該船在方位角45°方向,相距10海里的C處,還測得該船正沿方位角105°的方向以每小時9海里的速度行駛,救生艇立即以每小時21海里的速度前往營救,則救生艇與呼救艇與呼救船在B處相遇所需的最短時間為$\frac{2}{3}$小時.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知拋物線${C_1}:{y^2}=8x$的焦點為F,P是拋物線C1上位于第一象限內(nèi)的點,|PF|=4,P到雙曲線${C_2}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0\;\;,\;\;b>0})$的一條漸近線的距離為2,則雙曲線C2的離心率為$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c,且$\frac{c}=\sqrt{2}sinC$.
(1)求B;
(2)若a=6,△ABC的面積為9,求b的長,并判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系中,已知點M(1,0),P(x,y)為平面上一動點,P到直線x=2的距離為d,$\frac{|PM|}guwwv3u$=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求點P的軌跡C的方程;
(Ⅱ)不過原點O的直線l與C相交于A,B兩點,線段AB的中點為D,直線OD與直線x=2交點的縱坐標(biāo)為1,求△OAB面積的最大值及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.記△ABC的三個內(nèi)角分別為A,B,C,設(shè)$\overrightarrow{AB}$與$\overrightarrow{BC}$的夾角為θ,已知$\overrightarrow{AB}$$•\overrightarrow{BC}$=6,且6(2-$\sqrt{3}$)≤|$\overrightarrow{AB}$||$\overrightarrow{BC}$|sin(π-θ)≤6$\sqrt{3}$.
(Ⅰ)求tan15°的值和角θ的取值范圍;
(Ⅱ)求函數(shù)f(θ)=$\frac{1-\sqrt{2}cos(2θ-\frac{π}{4})}{sinθ}$的最大值.

查看答案和解析>>

同步練習(xí)冊答案