6.以直線l1:5x+3y=0,l2:5x-3y=0為漸近線且過點(diǎn)M(1,3)的雙曲線的標(biāo)準(zhǔn)方程.

分析 由題意可設(shè)雙曲線的方程為25x2-9y2=λ(λ≠0),代入點(diǎn)(1,3),解方程可得雙曲線的方程.

解答 解:以直線l1:5x+3y=0,l2:5x-3y=0為漸近線的雙曲線的方程
設(shè)為25x2-9y2=λ(λ≠0),
由雙曲線經(jīng)過點(diǎn)(1,3),即有25-9×9=λ,
解得λ=-56,
即為25x2-9y2=-56,
即有雙曲線的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{\frac{56}{9}}$-$\frac{{x}^{2}}{\frac{56}{25}}$=1.

點(diǎn)評 本題考查雙曲線的方程的求法,考查漸近線方程和雙曲線的方程的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=(a-1)(ax-a-x)(0<a<1).
(1)判斷f(x)的奇偶性并證明;
(2)用定義證明f(x)為R上的增函數(shù);
(3)若f(2at2-a2-a)+f(6at-1)≤0對任意$t∈[{0,\frac{1}{2}}]$恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)空間兩個單位向量$\overrightarrow{OA}$=(m,n,0),$\overrightarrow{OB}$=(0,n,p)與向量$\overrightarrow{OC}$=(1,1,1)的夾角都等于$\frac{π}{4}$,則cos∠AOB=(  )
A.$\frac{2-\sqrt{3}}{4}$B.$\frac{\sqrt{2}-\sqrt{6}}{4}$C.$\frac{2±\sqrt{3}}{4}$D.$\frac{\sqrt{2}±\sqrt{6}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)a>0且a≠1,函數(shù)f(x)=loga(x-2a)+loga(x-3a)的定義域?yàn)閇a+3,a+4].
(1)討論函數(shù)f(x)的單凋性;
(2)若f(x)≤1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an}中,a1=2,an+1=an+$\frac{1}{3}$(n∈N*),則該數(shù)列的通項(xiàng)公式為:an=$\frac{n+5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在某化學(xué)反應(yīng)的中間階段,壓力保持不變,溫度從1°變化到10°,反應(yīng)結(jié)果如下表所示(x代表溫度,y代表結(jié)果):
x12345678910
y35710111415172021
現(xiàn)算的$\sum_{i=1}^{10}$xi=55,$\sum_{i=1}^{10}$yi=123,$\sum_{i=1}^{10}$xiyi=844,$\sum_{i=1}^{10}$x2i=385.
(Ⅰ)以溫度為橫坐標(biāo),反應(yīng)結(jié)果為縱坐標(biāo),畫出散點(diǎn)圖,并求化學(xué)反應(yīng)的結(jié)果y對溫度x的線性回歸方程y=bx+a(精確到小數(shù)點(diǎn)后四位);
(Ⅱ)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān).
附:線性回歸方程y=bx+a中,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{{\sum_{i=1}^{n}x}_{i}^{2}-n\stackrel{-2}{x}}$,a=$\overline{y}$-b$\overline{x}$,其中$\overline{x}$,$\overline{y}$為樣本平均值,線性回歸方程也可寫為$\widehat{y}$=$\widehat$x+$\widehat{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.把函數(shù)y=2sin(2x+$\frac{π}{6}$)的圖象經(jīng)過變換,得到y(tǒng)=-2sin2x的圖象,這個變換是( 。
A.向左平移$\frac{5π}{12}$個單位B.向右平移$\frac{5π}{12}$個單位
C.向左平移$\frac{π}{6}$個單位D.向右平移$\frac{π}{6}$個單位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}滿足a1=3,an+1=3an+3n+1,數(shù)列{bn}滿足bn=$\frac{10\sqrt{3}-n}{n}$an,存在m∈N*,使得對任意的n∈N*,不等式bn≤bm恒成立,則m的值是16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若可導(dǎo)函數(shù)f(x)滿足f′(3)=9,則f(3x2)在x=1處的導(dǎo)數(shù)值為(  )
A.1B.9C.27D.54

查看答案和解析>>

同步練習(xí)冊答案