12.把“二進(jìn)制”數(shù)1011001(2)化為“十進(jìn)制”數(shù)是87.

分析 根據(jù)二進(jìn)制轉(zhuǎn)化為十進(jìn)制的方法,我們分別用每位數(shù)字乘以權(quán)重,累加后即可得到結(jié)果;

解答 解:1011001(2)=1+1×23+1×24+1×26=87.
故答案為:87.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是不同進(jìn)制數(shù)之間的轉(zhuǎn)換,解答的關(guān)鍵是熟練掌握不同進(jìn)制之間數(shù)的轉(zhuǎn)化規(guī)則.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.己知函數(shù)$f(x)=lnx-\frac{1}{2}a{x^2}+x,a∈R$.
(1)若f(1)=0,求函數(shù) f(x)的單調(diào)遞減區(qū)間;
(2)若關(guān)于x的不等式f(x)≤ax-1恒成立,求整數(shù)a的最小值;
(3)若 a=-2,正實(shí)數(shù) x1,x2滿足 f(x1)+f(x2)+x1x2=0,證明 ${x_1}+{x_2}≥\frac{{\sqrt{5}-1}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若從甲、乙、丙、丁4位同學(xué)中選出3名代表參加學(xué)校會(huì)議,則甲被選中的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=BB1,點(diǎn)D,E分別為BC,CC1的中點(diǎn).
(1)求證:平面ABE⊥平面AB1D;
(2)點(diǎn)P是線段B1D上一點(diǎn),若A1P∥平面ADE,求$\frac{{B}_{1}P}{PD}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.小王參加單位組織的乒乓球比賽,在小組賽中將進(jìn)行三場比賽,假設(shè)小王在第一場比賽中獲勝的概率為$\frac{4}{5}$,第二、第三場獲勝的概率為m,n(m>n),且不同比賽場次是否獲勝相互獨(dú)立.記ξ為小王取得比賽勝利的次數(shù)且P(ξ=0)=$\frac{6}{125}$,P(ξ=3)=$\frac{24}{125}$
(1)求m,n的值;
(2)求數(shù)學(xué)期望Eξ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若$cosB=\frac{a}{c}$,則△ABC的形狀為( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ex-ax-1(e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a>0時(shí),若f(x)≥0對(duì)任意的x∈R恒成立,求實(shí)數(shù)a的值;
(Ⅲ)求證:$ln[{1+\frac{2×3}{{{{(3-1)}^2}}}}]+ln[{1+\frac{{2×{3^2}}}{{{{({3^2}-1)}^2}}}}]+…+ln[{1+\frac{{2×{3^n}}}{{{{({3^n}-1)}^2}}}}]<2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x2+$\frac{4}{{x}^{2}}$.
(1)求證:f(x)是偶函數(shù);
(2)判斷函數(shù)f(x)在(0,$\sqrt{2}$)和($\sqrt{2}$,+∞)上的單調(diào)性并用定義法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)隨機(jī)變量X的分布列為$P(X=i)=a•{({\frac{2}{3}})^i}i=1,2,3$,則a的值為(  )
A.$\frac{17}{38}$B.$\frac{27}{38}$C.$\frac{17}{19}$D.$\frac{27}{19}$

查看答案和解析>>

同步練習(xí)冊(cè)答案