【題目】如圖,正方形是某城市的一個(gè)區(qū)域的示意圖,陰影部分為街道,各相鄰的兩紅綠燈之間的距離相等,處為紅綠燈路口,紅綠燈統(tǒng)一設(shè)置如下:先直行綠燈30秒,再左轉(zhuǎn)綠燈30秒,然后是紅燈1分鐘,右轉(zhuǎn)不受紅綠燈影響,這樣獨(dú)立的循環(huán)運(yùn)行.小明上學(xué)需沿街道從處騎行到處(不考慮處的紅綠燈),出發(fā)時(shí)的兩條路線()等可能選擇,且總是走最近路線.

1)請(qǐng)問小明上學(xué)的路線有多少種不同可能?

2)在保證通過紅綠燈路口用時(shí)最短的前提下,小明優(yōu)先直行,求小明騎行途中恰好經(jīng)過處,且全程不等紅綠燈的概率;

3)請(qǐng)你根據(jù)每條可能的路線中等紅綠燈的次數(shù)的均值,為小明設(shè)計(jì)一條最佳的上學(xué)路線,且應(yīng)盡量避開哪條路線?

【答案】16種;(2;(3.

【解析】

1)從4條街中選擇2條橫街即可;

2)小明途中恰好經(jīng)過處,共有4條路線,即,,,分別對(duì)4條路線進(jìn)行分析計(jì)算概率;

3)分別對(duì)小明上學(xué)的6條路線進(jìn)行分析求均值,均值越大的應(yīng)避免.

1)路途中可以看成必須走過2條橫街和2條豎街,即從4條街中選擇2條橫街即可,所以路線總數(shù)為.

2)小明途中恰好經(jīng)過處,共有4條路線:

①當(dāng)走時(shí),全程不等紅綠燈的概率;

②當(dāng)走時(shí),全程不等紅綠燈的概率;

③當(dāng)走時(shí),全程不等紅綠燈的概率;

④當(dāng)走時(shí),全程不等紅綠燈的概率.

所以途中恰好經(jīng)過處,且全程不等信號(hào)燈的概率

.

3)設(shè)以下第條的路線等信號(hào)燈的次數(shù)為變量,則

①第一條:,則

②第二條:,則;

③另外四條路線:;;

,則

綜上,小明上學(xué)的最佳路線為;應(yīng)盡量避開.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,的中點(diǎn),.

1)求證:平面

2)點(diǎn)在線段上,,試確定的值,使平面;

3)若平面,平面平面,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點(diǎn),直線、相交于點(diǎn),且它們的斜率之積為,記動(dòng)點(diǎn)的軌跡為曲線。

(1)求曲線的方程;

(2)過點(diǎn)的直線與曲線交于、兩點(diǎn),是否存在定點(diǎn),使得直線斜率之積為定值,若存在,求出坐標(biāo);若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,ACBC,且,AC=BC=2,DE分別為AB,PB中點(diǎn),PD⊥平面ABC,PD=3.

(1)求直線CE與直線PA夾角的余弦值;

(2)求直線PC與平面DEC夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是自然對(duì)數(shù)的底數(shù),.

1)求函數(shù)的圖象在處的切線方程;

2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

3)若函數(shù)在區(qū)間上有兩個(gè)極值點(diǎn),且恒成立,求滿足條件的的最小值(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市一所醫(yī)院在某時(shí)間段為發(fā)燒超過38的病人特設(shè)發(fā)熱門診,該門診記錄了連續(xù)5天晝夜溫差()與就診人數(shù)的資料:

日期

1

2

3

4

5

晝夜溫差()

8

10

13

12

7

就診人數(shù)(人)

18

25

28

27

17

(1)求的相關(guān)系數(shù),并說明晝夜溫差()與就診人數(shù)具有很強(qiáng)的線性相關(guān)關(guān)系.

(2)求就診人數(shù)(人)關(guān)于出晝夜溫差()的線性回歸方程,預(yù)測(cè)晝夜溫差為9時(shí)的就診人數(shù).

附:樣本的相關(guān)系數(shù)為,當(dāng)時(shí)認(rèn)為兩個(gè)變量有很強(qiáng)的線性相關(guān)關(guān)系.

回歸直線方程為,其中.

參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線

1)當(dāng)時(shí),直線被圓截得的弦長(zhǎng)為__________;

2)若在圓上存在一點(diǎn),在直線上存在一點(diǎn),使得的中點(diǎn)恰為坐標(biāo)原點(diǎn),則實(shí)數(shù)的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題:其中正確命題數(shù)是(

A.在線性回歸模型中,相關(guān)系數(shù)表示解釋變量對(duì)于預(yù)報(bào)變量變化的貢獻(xiàn)率,越接近于1,表示回歸效果越好

B.兩個(gè)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值就越接近于1

C.在回歸直線方程中,當(dāng)解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均減少0.5個(gè)單位

D.對(duì)分類變量,它們的隨機(jī)變量的觀測(cè)值來說,觀測(cè)值越小,有關(guān)系的把握程度越大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)以往統(tǒng)計(jì)資料,某地車主購(gòu)買甲種保險(xiǎn)的概率為05,購(gòu)買乙種保險(xiǎn)但不購(gòu)買甲種保險(xiǎn)的概率為03.設(shè)各車主購(gòu)買保險(xiǎn)相互獨(dú)立.

1)求該地1位車主至少購(gòu)買甲、乙兩種保險(xiǎn)中的1種的概率;

2X表示該地的100位車主中,甲、乙兩種保險(xiǎn)都不購(gòu)買的車主數(shù),求X的均值和方差.

查看答案和解析>>

同步練習(xí)冊(cè)答案