1.已知:函數(shù)f(x)=x2,g(x)=2x-a,若對任意的x1∈[-1,2],存在x2∈[0,2]使得f(x1)>g(x2),則實數(shù)a的取值范圍a>1.

分析 對于任意的x1,總存在x2使f(x1)≥g(x2)成立成立,只需函數(shù)可以轉(zhuǎn)化為f(x)min≥g(x)min,從而問題得解.

解答 解:若對任意的x1∈[-1,2],存在x2∈[0,2]使得f(x1)>g(x2),
只需f(x)min>g(x)min,
∵x1∈[-1,2],f(x)=x2∈[0,4],即f(x)min=0,
x2∈[0,2],g(x)=2x-a∈[1-a,4-a]
∴g(x)min=1-a,
∴0>1-a,
∴a>1.
故答案為:a>1.

點評 本題主要考查函數(shù)恒成立問題以及函數(shù)單調(diào)性的應用,屬于對基本知識的考查,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,PB⊥底面ABCD,底面ABCD為梯形,AD∥BC,AD⊥AB,且PB=AB=AD=3,BC=1.
(Ⅰ)若點F為PD上一點且PF=$\frac{1}{3}$PD,證明:CF∥平面PAB;
(Ⅱ)求二面角B-PD-A的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知F1為橢圓C1:$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{^{2}}$=1的上焦點,F(xiàn)1也是拋物線C2:x2=4y的焦點,點M是C1與C2在第二象限的交點,且|MF1|=$\frac{5}{3}$.
(1)求橢圓C1的方程;
(2)過F1點作互相垂直的兩條直線分別交拋物線C2于A,B兩點,交橢圓C1于C,D兩點,求四邊形ABCD的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=xlnx+x2-ax+2(a∈R)有兩個不同的零點x1,x2
(1)求實數(shù)a的取值范圍.
(2)求證:x1+x2>2.
(3)求證:x1•x2>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,其中AD∥BC,AB⊥AD,AB=AD=$\frac{1}{2}$BC,$\overrightarrow{BE}$=$\frac{1}{4}$$\overrightarrow{BC}$.
(1)求證:DE⊥平面PAC;
(2)若直線PE與平面PAC所成角的正弦值為$\frac{\sqrt{30}}{10}$,求二面角A-PC-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合M={0,1,2,3,4},N={1,3,5}且P=M∪N,則P的元素有( 。﹤.
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在空間直角坐標系中,一定點到三個坐標平面的距離都是2,那么該定點到原點的距離是( 。
A.$\sqrt{6}$B.$2\sqrt{3}$C.$\sqrt{3}$D.$\frac{{2\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.(1)求以橢圓$\frac{x^2}{8}+\frac{y^2}{5}=1$的焦點為頂點,以橢圓的頂點為焦點的雙曲線方程
(2)求此雙曲線方程的實半軸長,虛半軸長,離心率,漸近線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.下列命題中:
(1)a=4,A=30°,若△ABC唯一確定,則0<b≤4.
(2)若點(1,1)在圓x2+y2+mx-y+4=0外,則m的取值范圍是(-5,+∞);
(3)若曲線$\frac{{x}^{2}}{4+k}$+$\frac{{y}^{2}}{1-k}$=1表示雙曲線,則k的取值范圍是(1,+∞]∪(-∞,-4];
(4)將函數(shù)y=cos(2x-$\frac{π}{3}$)(x∈R)的圖象向左平移$\frac{π}{3}$個單位,得到函數(shù)y=cos2x的圖象.
(5)已知雙曲線方程為x2-$\frac{{y}^{2}}{2}$=1,則過點P(1,1)可以作一條直線l與雙曲線交于A,B兩點,使點P是線段AB的中點.正確的是(2),(5)(填序號)

查看答案和解析>>

同步練習冊答案