6.已知集合M={0,1,2,3,4},N={1,3,5}且P=M∪N,則P的元素有( 。﹤.
A.2B.4C.6D.8

分析 利用交集定義先求出集合P,由此能求出結(jié)果.

解答 解:∵集合M={0,1,2,3,4},N={1,3,5}且P=M∪N,
∴P={0,1,2,3,4,5},
∴P的元素有6個.
故選:C.

點(diǎn)評 本題考查集合中元素個數(shù)的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意并集定義的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù),則所得的兩個點(diǎn)數(shù)和不小于10的概率為( 。
A.$\frac{1}{3}$B.$\frac{5}{18}$C.$\frac{2}{9}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若當(dāng)x∈R時,函數(shù)f(x)=a|x|(a>0且a≠0)始終滿足f(x)≥1,則函數(shù)$y=\frac{{{{log}_a}|x|}}{x^3}$的大致圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)單位向量$\overrightarrow{a}$,$\overrightarrow$的夾角為銳角,若對任意的(x,y)∈{(x,y)|x$\overrightarrow{a}$+y$\overrightarrow$|=1,xy≥0},都有|x+2y|≤$\frac{8}{\sqrt{15}}$成立,則$\overrightarrow{a}$•$\overrightarrow$的最小值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知:函數(shù)f(x)=x2,g(x)=2x-a,若對任意的x1∈[-1,2],存在x2∈[0,2]使得f(x1)>g(x2),則實(shí)數(shù)a的取值范圍a>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{log}_{\frac{1}{2}}^{(-x)},x<0\\{log}_{2}^{x},x>0\end{array}\right.$,若f(a)>f(-a),則a的范圍為(  )
A.(-1,0)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(1,+∞)D.(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若a、b、c∈R,則下列四個命題中,正確的是( 。
A.若a>b,則ac2>bc2B.若a>b,c>d,則a-c>b-d
C.若a>b,則$\frac{1}{a}<\frac{1}$D.若a>|b|,則a2>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知向量$\overrightarrow a$,$\overrightarrow b$滿足條件:$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=\sqrt{2}$,且$\overrightarrow a$與$2\overrightarrow b-\overrightarrow a$互相垂直,則$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知復(fù)數(shù)z1=3-i,|z2|=2,則|z1+z2|的最大值是(  )
A.$\sqrt{10}-\sqrt{2}$B.$\sqrt{10}+\sqrt{2}$C.$\sqrt{10}$+2D.$\sqrt{10}-2$

查看答案和解析>>

同步練習(xí)冊答案