【題目】如圖,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分別是AB,A1C的中點(diǎn).
(1)求證:直線MN⊥平面ACB1;
(2)求點(diǎn)C1到平面B1MC的距離.
【答案】(1)證明見解析.(2)
【解析】
(1)連接AC1,BC1,結(jié)合中位線定理可證MN∥BC1,再結(jié)合線面垂直的判定定理和線面垂直的性質(zhì)分別求證AC⊥BC1,BC1⊥B1C,即可求證直線MN⊥平面ACB1;
(2)作交于點(diǎn),通過(guò)等體積法,設(shè)C1到平面B1CM的距離為h,則有,結(jié)合幾何關(guān)系即可求解
(1)證明:連接AC1,BC1,則N∈AC1且N為AC1的中點(diǎn);
∵M是AB的中點(diǎn).
所以:MN∥BC1;
∵A1A⊥平面ABC,AC平面ABC,
∴A1A⊥AC,
在三棱柱ABC﹣A1B1C1中,AA1∥CC,
∴AC⊥CC1,
∵∠ACB=90°,BC∩CC1=C,BC平面BB1C1C,CC1平面BB1C1C,
∴AC⊥平面BB1C1C,BC平面BB1C1C,
∴AC⊥BC1;又MN∥BC1
∴AC⊥MN,
∵CB=C1C=1,
∴四邊形BB1C1C正方形,
∴BC1⊥B1C,∴MN⊥B1C,
而AC∩B1C=C,且AC平面ACB1,CB1平面ACB1,
∴MN⊥平面ACB1,
(2)作交于點(diǎn),設(shè)C1到平面B1CM的距離為h,
因?yàn)?/span>MP,
所以MP,
因?yàn)?/span>CM,B1C;
B1M,所以
所以:CMB1M.
因?yàn)?/span>,所以,解得
所以點(diǎn),到平面的距離為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中,.
(1)若,求的極值;
(2)若曲線與直線有三個(gè)互異的公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校名學(xué)生參加軍事冬令營(yíng)活動(dòng),活動(dòng)期間各自扮演一名角色進(jìn)行分組游戲,角色按級(jí)別從小到大共種,分別為士兵、排長(zhǎng)、連長(zhǎng)、營(yíng)長(zhǎng)、團(tuán)長(zhǎng)、旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級(jí)別連續(xù)的個(gè)不同角色.已知這名學(xué)生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學(xué)生,將這名學(xué)生分成組進(jìn)行游戲,則新加入的學(xué)生可以扮演的角色的種數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,,,給出以下四個(gè)命題:(1)是偶函數(shù);(2)是偶函數(shù);(3)的最小值為;(4)有兩個(gè)零點(diǎn);其中真命題的是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.若:,,則:,.
B.命題“已知,若,則或”是真命題.
C.“在上恒成立”“在上恒成立”.
D.函數(shù)的最小值為2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了響應(yīng)綠色出行,某市推出了新能源分時(shí)租賃汽車,并對(duì)該市市民使用新能源租賃汽車的態(tài)度進(jìn)行調(diào)查,得到有關(guān)數(shù)據(jù)如下表1:
表1
愿意使用新能源租賃汽車 | 不愿意使用新能源租賃汽車 | 總計(jì) | |
男性 | 100 | 300 | |
女性 | 400 | ||
總計(jì) | 400 |
其中一款新能源分時(shí)租賃汽車的每次租車費(fèi)用由行駛里程和用車時(shí)間兩部分構(gòu)成:行駛里程按1元/公里計(jì)費(fèi);用車時(shí)間不超過(guò)30分鐘時(shí),按0.15元/分鐘計(jì)費(fèi);超過(guò)30分鐘時(shí),超出部分按0.20元/分鐘計(jì)費(fèi).已知張先生從家到上班地點(diǎn)15公里,每天上班租用該款汽車一次,每次的用車時(shí)間均在20~60分鐘之間,由于堵車紅綠燈等因素,每次的用車時(shí)間(分鐘)是一個(gè)隨機(jī)變量.張先生記錄了100次的上班用車時(shí)間,并統(tǒng)計(jì)出在不同時(shí)間段內(nèi)的頻數(shù)如下表2:
表2
時(shí)間(分鐘) | (20,30] | (30,40] | (40,50] | (50,60] |
頻數(shù) | 20 | 40 | 30 | 10 |
(1)請(qǐng)補(bǔ)填表1中的空缺數(shù)據(jù),并判斷是否有99.5%的把握認(rèn)為該市市民對(duì)新能源租賃汽車的使用態(tài)度與性別有關(guān);
(2)根據(jù)表2中的數(shù)據(jù),將各時(shí)間段發(fā)生的頻率視為概率,以各時(shí)間段的區(qū)間中點(diǎn)值代表該時(shí)間段的取值,試估計(jì)張先生租用一次該款汽車上班的平均用車時(shí)間;
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若是的極值點(diǎn),求的極大值;
(2)求實(shí)數(shù)的范圍,使得恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的不等式的解集為,且中只有一個(gè)整數(shù),則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,PA=AD=DC=2,AB=4且AB∥CD,∠BAD=90°.
(1)求證:BC⊥PC;
(2)求PB與平面PAC所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com