【題目】設函數(shù),其中.

1)若,求的極值;

2)若曲線與直線有三個互異的公共點,求實數(shù)的取值范圍.

【答案】1)極大值為,極小值為;(2

【解析】

1)把代入后求導,判斷的單調(diào)性,進而可以求得極值;

2)將公共點轉(zhuǎn)化為零點問題,構(gòu)造函數(shù),求導判斷的單調(diào)性,結(jié)合零點定理即可求出的取值范圍.

1)當時,,

,解得,或;

變化時,,的變化情況如下表;

+

0

0

+

單調(diào)增

極大值

單調(diào)減

極小值

單調(diào)增

的極大值為,

極小值為;

2)由題意,曲線與直線有三個互異的公共點,

可轉(zhuǎn)化為

,可得;

設函數(shù),

即函數(shù)有三個不同的零點;

,

時,恒成立,此時上單調(diào)遞增,不合題意

時,令,解得,

,解得,或,

,解得

上單調(diào)遞增,在上單調(diào)遞減,

的極大值為;

極小值為

,由的單調(diào)性可知,函數(shù)至多有兩個零點,不合題意;

,即,解得

此時,

,

從而由零點定理知,

在區(qū)間,內(nèi)各有一個零點,符合題意;

的取值范圍是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某手機企業(yè)為確定下一年度投入某種產(chǎn)品的研發(fā)費用,統(tǒng)計了近年投入的年研發(fā)費用千萬元與年銷售量千萬件的數(shù)據(jù),得到散點圖1,對數(shù)據(jù)作出如下處理:令,得到相關(guān)統(tǒng)計量的值如圖2

1)利用散點圖判斷哪一個更適合作為年研發(fā)費用和年銷售量的回歸類型(不必說明理由),并根據(jù)數(shù)據(jù),求出的回歸方程;

2)已知企業(yè)年利潤千萬元與的關(guān)系式為(其中為自然對數(shù)的底數(shù)),根據(jù)(1)的結(jié)果,要使得該企業(yè)下一年的年利潤最大,預計下一年應投入多少研發(fā)費用?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種設備隨著使用年限的增加,每年的維護費相應增加現(xiàn)對一批該設備進行調(diào)查,得到這批設備自購入使用之日起,前5年平均每臺設備每年的維護費用大致如下表:

年份(年)

1

2

3

4

5

維護費(萬元)

1.1

1.6

2

2.5

2.8

1)在這5年中隨機抽取兩年,求平均每臺設備每年的維護費用至少有1年多于2萬元的概率;

2)求關(guān)于的線性回歸方程.若該設備的價格是每臺16萬元,你認為應該使用滿五年換一次設備,還是應該使用滿八年換一次設備?請說明理由.

參考公式:用最小二乘法求線性回歸方程的系數(shù)公式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義域為的函數(shù),若同時滿足下列條件:①內(nèi)有單調(diào)性;②存在區(qū)間,使在區(qū)間上的值域也為,則稱上的精彩函數(shù),為函數(shù)的精彩區(qū)間.

1)求精彩區(qū)間符合條件的精彩區(qū)間;

2)判斷函數(shù)是否為精彩函數(shù)?并說明理由.

3)若函數(shù)是精彩函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】市某機構(gòu)為了調(diào)查該市市民對我國申辦年足球世界杯的態(tài)度,隨機選取了位市民進行調(diào)查,調(diào)查結(jié)果統(tǒng)計如下:

支持

不支持

合計

男性市民

女性市民

合計

(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(2)利用(1)完成的表格數(shù)據(jù)回答下列問題:

(i)能否在犯錯誤的概率不超過的前提下認為支持申辦足球世界杯與性別有關(guān);

(ii)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有位退休老人,其中位是教師,現(xiàn)從這位退休老人中隨機抽取人,求至多有位老師的概率.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列和等比數(shù)列的各項均為整數(shù),它們的前項和分別為,且.

1)求數(shù)列,的通項公式;

2)求;

3)是否存在正整數(shù),使得恰好是數(shù)列中的項?若存在,求出所有滿足條件的的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù))

1)若曲線在點處的切線平行于軸,求的值;

2)求函數(shù)的極值;

3)當時,若直線與曲線沒有公共點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四邊形中,;如圖,將沿邊折起,連結(jié),使,求證:

1)平面平面;

2)若為棱上一點,且與平面所成角的正弦值為,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,A1A⊥平面ABC,∠ACB90°,ACCBC1C1,M,N分別是AB,A1C的中點.

1)求證:直線MN⊥平面ACB1;

2)求點C1到平面B1MC的距離.

查看答案和解析>>

同步練習冊答案