【題目】已知函數(shù).

(1)當(dāng)時,求的單調(diào)區(qū)間;

(2)若有兩個零點,求實數(shù)的取值范圍.

【答案】(1)見解析;(2)

【解析】

(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;

(2)記t=lnx+x,通過討論a的范圍,結(jié)合函數(shù)的單調(diào)性以及函數(shù)的零點的個數(shù)判斷a的范圍即可.

(1)定義域為:,

當(dāng)時,.

時為減函數(shù);在時為增函數(shù).

(2)記,則上單增,且.∴ .∴上有兩個零點等價于上有兩個零點.

①在時,上單增,且,故無零點;②在時,上單增,又,,故上只有一個零點;

③在時,由可知時有唯一的一個極小值.

,,無零點;若,只有一個零點;若時,,而,由于時為減函數(shù),可知:時,.從而,∴上各有一個零點.綜上討論可知:有兩個零點,即所求的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)四點均在雙曲線的右支上.

(1)若(實數(shù)),證明:(O是坐標(biāo)原點);

(2)若,P是線段AB的中點,過點P分別作該雙曲線的兩條漸近線的垂線,垂足為M、N,求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二期中考試后,教務(wù)處計劃對全年級數(shù)學(xué)成績進(jìn)行統(tǒng)計分析,從男、女生中各隨機抽取100名學(xué)生,分別制成了男生和女生數(shù)學(xué)成績的頻率分布直方圖,如圖所示.

(1)若所得分?jǐn)?shù)大于等于80分認(rèn)定為優(yōu)秀,求男、女生優(yōu)秀人數(shù)各有多少人?

(2)在(1)中的優(yōu)秀學(xué)生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有1名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+1|.

(1)若不等式f(x)≥|2x+1|1的解集為A,且,求實數(shù)t的取值范圍;

(2)在(1)的條件下,若,證明:f(ab)>f(a)f(b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率是橢圓上一點.

1)求橢圓的方程;

2)若直線的斜率為,且直線交橢圓、兩點,點關(guān)于原點的對稱點為,點是橢圓上一點,判斷直線的斜率之和是否為定值,如果是,請求出此定值,如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一平面上有32個點,其中無三點共線證明在這32個點中至少能找到2135個四點組形成凸四邊形的四個頂點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把分別寫有1,23,4,5的五張卡片全部分給甲、乙、丙三個人,每人至少一張,且若分得的卡片超過一張,則必須是連號,那么不同的分法種數(shù)為______用數(shù)字作答

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校初中部共120名教師,高中部共180名教師,其性別比例如圖所示,已知按分層抽樣方法得到的工會代表中,高中部女教師有6人,則工會代表中男教師的總?cè)藬?shù)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,設(shè)交于兩點,中點為,的垂直平分線交、.為坐標(biāo)原點,極軸為軸的正半軸建立直角坐標(biāo)系.

1)求的直角坐標(biāo)方程與點的直角坐標(biāo);

2)求證:.

查看答案和解析>>

同步練習(xí)冊答案