【題目】某校高二期中考試后,教務(wù)處計(jì)劃對全年級數(shù)學(xué)成績進(jìn)行統(tǒng)計(jì)分析,從男、女生中各隨機(jī)抽取100名學(xué)生,分別制成了男生和女生數(shù)學(xué)成績的頻率分布直方圖,如圖所示.

(1)若所得分?jǐn)?shù)大于等于80分認(rèn)定為優(yōu)秀,求男、女生優(yōu)秀人數(shù)各有多少人?

(2)在(1)中的優(yōu)秀學(xué)生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有1名男生的概率.

【答案】(1)男30人,女45人(2

【解析】

(1)根據(jù)頻率分布直方圖求出男、女生優(yōu)秀人數(shù)即可;

(2)求出樣本中的男生和女生的人數(shù),寫出所有的基本事件以及滿足條件的基本事件的個(gè)數(shù),從而求出滿足條件的概率即可.

(1)由題可得,男生優(yōu)秀人數(shù)為人,

女生優(yōu)秀人數(shù)為人;

2)因?yàn)闃颖救萘颗c總體中的個(gè)體數(shù)的比是

所以樣本中包含男生人數(shù)為人,女生人數(shù)為人.

設(shè)兩名男生為,,三名女生為,

則從5人中任意選取2人構(gòu)成的所有基本事件為:

,,,,,,10個(gè),

記事件:“選取的2人中至少有一名男生”,

則事件包含的基本事件有:

,,,,7個(gè).

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體中,底面是邊長為的正方形,對角線相交于點(diǎn),點(diǎn)在線段上,且,與底面所成角為.

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)某市2011年新建住房400m2,其中250m2是中低價(jià)房,預(yù)計(jì)在今后的若干年內(nèi),該市每年新建住房面積平均比上一年增長8%.另外,每年新建住房中,中低價(jià)房的面積比上一年增加50m2,那么到哪一年底,

1)該市歷年所建中低價(jià)房的累計(jì)面積(以2011年為累計(jì)的第一年)將首次不少于4750m2?

2)當(dāng)年建造的中低價(jià)房的面積占該年建造住房面積的比例首次大于85%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知首項(xiàng)為的等比數(shù)列不是遞減數(shù)列,其前n項(xiàng)和為,且成等差數(shù)列。

1)求數(shù)列的通項(xiàng)公式;

2)設(shè),求數(shù)列的最大項(xiàng)的值與最小項(xiàng)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代有著輝煌的數(shù)學(xué)研究成果,其中的《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國古代數(shù)學(xué)的重要文獻(xiàn),這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時(shí)期,某中學(xué)擬從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時(shí)期專著的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C:(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,P為雙曲線C上的一點(diǎn),線段PF1與y軸的交點(diǎn)M恰好是線段PF1的中點(diǎn),,其中O為坐標(biāo)原點(diǎn),則雙曲線C的漸近線的斜率與離心率分別是( )

A. ±1, B. 1, C. ±2, D. 2,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,∠BAC=120°,AC=AB=2,AA1=3.

(1)求三棱柱ABC-A1B1C1的體積;

(2)若M是棱BC的一個(gè)靠近點(diǎn)C的三等分點(diǎn),求二面角A-A1M-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時(shí),求的單調(diào)區(qū)間;

(2)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年末,武漢出現(xiàn)新型冠狀病毒(肺炎疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,目前沒有特異治療方法.防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從27日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,某社區(qū)將本社區(qū)的排查工作人員分為,兩個(gè)小組,排查工作期間社區(qū)隨機(jī)抽取了100戶已排查戶,進(jìn)行了對排查工作態(tài)度是否滿意的電話調(diào)查,根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)后,得到如下的列聯(lián)表.

是否滿意

組別

不滿意

滿意

合計(jì)

16

34

50

2

45

50

合計(jì)

21

79

100

1)分別估計(jì)社區(qū)居民對組、組兩個(gè)排查組的工作態(tài)度滿意的概率;

2)根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認(rèn)為“對社區(qū)排查工作態(tài)度滿意”與“排查工作組別”有關(guān)?

附表:

附:

查看答案和解析>>

同步練習(xí)冊答案